A244262 Decimal expansion of theta = 2.472548..., an auxiliary constant used to compute the best constant in Friedrichs' inequality in one dimension.
2, 4, 7, 2, 5, 4, 8, 0, 7, 5, 2, 4, 0, 1, 2, 2, 7, 0, 1, 4, 3, 7, 6, 3, 5, 5, 0, 9, 3, 5, 8, 2, 0, 2, 8, 3, 7, 7, 4, 3, 6, 0, 5, 5, 5, 5, 8, 8, 4, 1, 1, 5, 1, 6, 0, 8, 0, 7, 2, 2, 1, 4, 8, 1, 1, 7, 2, 1, 8, 1, 9, 1, 2, 6, 2, 7, 5, 4, 3, 2, 0, 9, 7, 7, 0, 4, 6, 8, 7, 4, 0, 8, 7, 5, 8, 8, 4, 2, 4, 8, 8
Offset: 1
Examples
2.4725480752401227014376355093582...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 223.
Links
Crossrefs
Cf. A244263.
Programs
-
Mathematica
theta = t /. FindRoot[Cos[t] - t/(t^2 + 1)*Sin[t] == -1, {t, 2}, WorkingPrecision -> 101]; RealDigits[theta] // First
Formula
Theta is the unique solution of the equation cos(t) - t/(t^2 + 1)*sin(t) = -1, with 0 < t < Pi.