This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244263 #5 Jun 24 2014 11:36:15 %S A244263 1,0,7,8,6,9,0,2,1,6,2,5,4,6,8,6,5,0,8,0,2,4,2,8,3,3,4,9,7,4,7,0,6,4, %T A244263 6,7,2,1,7,6,3,6,6,8,1,4,4,6,1,7,2,5,4,9,6,4,4,5,5,0,4,5,3,2,9,5,6,9, %U A244263 3,2,2,4,2,8,8,0,6,5,0,4,8,1,9,1,7,5,0,2,0,7,9,8,8,0,3,2,3,7,2,6 %N A244263 Decimal expansion of beta = 1.07869..., the best constant in Friedrichs' inequality in one dimension. %D A244263 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 223. %H A244263 J. T. Marti, <a href="http://dx.doi.org/10.1137/0516010">The Least Constant in Friedrichs’ Inequality in One Dimension.</a> %F A244263 Beta = sqrt(1 + 1/theta^2), where theta is the unique solution of the equation cos(t) - t/(t^2 + 1)*sin(t) = -1, with 0 < t < Pi, %e A244263 1.078690216254686508024283349747... %t A244263 theta = t /. FindRoot[Cos[t] - t/(t^2 + 1)*Sin[t] == -1, {t, 2}, WorkingPrecision -> 99]; beta = Sqrt[1 + 1/theta^2]; RealDigits[beta] // First %Y A244263 Cf. A244262. %K A244263 nonn,cons,easy %O A244263 1,3 %A A244263 _Jean-François Alcover_, Jun 24 2014