This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244267 #19 May 22 2025 10:21:39 %S A244267 1,6,35,250,1986,16716,144183,1271765,11378311,102956670,940224567, %T A244267 8651691637,80123673992 %N A244267 a(n) = the frequency of the most common 2-digit ending of a prime < 10^n. %e A244267 Of the primes up to and including the last of the 3-digit primes, the most common 2-digit ending occurs 6 times. Thus a(3) = 6. %o A244267 (Python) %o A244267 import sympy %o A244267 from sympy import isprime %o A244267 def prend1(d,n): %o A244267 lst = [ ] %o A244267 for k in range(10**n): %o A244267 if isprime(k): %o A244267 lst.append((k%10**d)) %o A244267 new = 0 %o A244267 newlst = [ ] %o A244267 for i in range(10**(d-1),10**d): %o A244267 new = lst.count(i) %o A244267 newlst.append(new) %o A244267 return max(newlst) %o A244267 n = 3 %o A244267 while n < 10: %o A244267 print(prend1(2,n),end=', ') %o A244267 n += 1 %Y A244267 Cf. A244192. %K A244267 nonn,base,more,hard %O A244267 2,2 %A A244267 _Derek Orr_, Jun 24 2014 %E A244267 a(9)-a(12) from _Hiroaki Yamanouchi_, Aug 26 2014 %E A244267 Example corrected by _Harvey P. Dale_, Sep 27 2018 %E A244267 a(13)-a(14) from _Giovanni Resta_, Oct 23 2018