cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244307 Sum over each antidiagonal of A244306.

Original entry on oeis.org

0, 2, 7, 20, 45, 92, 170, 296, 486, 766, 1161, 1708, 2443, 3416, 4676, 6288, 8316, 10842, 13947, 17732, 22297, 27764, 34254, 41912, 50882, 61334, 73437, 87388, 103383, 121648, 142408, 165920, 192440, 222258, 255663, 292980, 334533, 380684, 431794, 488264
Offset: 1

Views

Author

Keywords

Examples

			a(1..9) are formed as follows:
.        Antidiagonals of A244306             n  a(n)
.                    0                        1     0
.                  1   1                      2     2
.                2   3   2                    3     7
.              4   6   6   4                  4    20
.            6  10  13  10   6                5    45
.          9  15  22  22  15   9              6    92
.       12  21  34  36  34  21  12            7   170
.     16  28  48  56  56  48  28  16          8   296
.   20  36  65  78  88  78  65  36  20        9   486
		

Crossrefs

Cf. A244306.

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
    (4*k^2*n^2 + 2*k^2 + 8*k*n + 2*n^2 - 4*k - 4*n - 1 -
    (2*k^2 - 4*k - 1)*(-1)^n - (2*n^2 - 4*n - 1)*(-1)^k -
    (-1)^k*(-1)^n)*(1/32);
    end proc;
    for j to 40 do
       a := 0;
       for k from j by -1 to 1 do
          n := j - k + 1;
          a := a + b(n, k);
       end do;
       printf("%d, ", a);
    end do;

Formula

Empirically, a(n) = (6*n^5 + 30*n^4 + 180*n^3 + 240*n^2 - 141*n - 135 + (45*n + 135)*(-1)^n)/1440.
Empirical g.f.: x^2*(x^3-x+2) / ((x-1)^6*(x+1)^2). - Colin Barker, Jun 01 2015

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Mar 31 2015