A244307 Sum over each antidiagonal of A244306.
0, 2, 7, 20, 45, 92, 170, 296, 486, 766, 1161, 1708, 2443, 3416, 4676, 6288, 8316, 10842, 13947, 17732, 22297, 27764, 34254, 41912, 50882, 61334, 73437, 87388, 103383, 121648, 142408, 165920, 192440, 222258, 255663, 292980, 334533, 380684, 431794, 488264
Offset: 1
Keywords
Examples
a(1..9) are formed as follows: . Antidiagonals of A244306 n a(n) . 0 1 0 . 1 1 2 2 . 2 3 2 3 7 . 4 6 6 4 4 20 . 6 10 13 10 6 5 45 . 9 15 22 22 15 9 6 92 . 12 21 34 36 34 21 12 7 170 . 16 28 48 56 56 48 28 16 8 296 . 20 36 65 78 88 78 65 36 20 9 486
Links
- Christopher Hunt Gribble, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A244306.
Programs
-
Maple
b := proc (n::integer, k::integer)::integer; (4*k^2*n^2 + 2*k^2 + 8*k*n + 2*n^2 - 4*k - 4*n - 1 - (2*k^2 - 4*k - 1)*(-1)^n - (2*n^2 - 4*n - 1)*(-1)^k - (-1)^k*(-1)^n)*(1/32); end proc; for j to 40 do a := 0; for k from j by -1 to 1 do n := j - k + 1; a := a + b(n, k); end do; printf("%d, ", a); end do;
Formula
Empirically, a(n) = (6*n^5 + 30*n^4 + 180*n^3 + 240*n^2 - 141*n - 135 + (45*n + 135)*(-1)^n)/1440.
Empirical g.f.: x^2*(x^3-x+2) / ((x-1)^6*(x+1)^2). - Colin Barker, Jun 01 2015
Extensions
Terms corrected and extended by Christopher Hunt Gribble, Mar 31 2015