This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244356 #17 May 22 2025 10:21:39 %S A244356 37,46,53,56,57,58,67,68,73,78,86,97,307,337,346,358,373,376,379,388, %T A244356 397,406,429,433,446,457,466,469,473,477,478,489,493,498,506,507,508, %U A244356 538,553,556,557,558,577,578,586,587,588,596,597,598,646,656,657,658,667,668,669 %N A244356 Numbers n such that n and n+1 are not divisible by any of their nonzero digits. %C A244356 This is a subsequence of A038772. %C A244356 All numbers end in a 3, 6, 7, 8, or 9. %H A244356 Robert Israel, <a href="/A244356/b244356.txt">Table of n, a(n) for n = 1..10000</a> %e A244356 37 is not divisible by 3 or 7 and 38 is not divisible by 3 or 8. Thus 37 is a member of this sequence. %p A244356 filter:= proc(n) local L; %p A244356 L:= convert(convert(n,base,10), set) minus {0}; %p A244356 not ormap(t -> n mod t = 0, L) %p A244356 end proc: %p A244356 B:= select(filter, {$1..1000}): %p A244356 sort(convert(B intersect map(`-`,B,1), list)); # _Robert Israel_, Dec 08 2019 %o A244356 (Python) %o A244356 def a(n): %o A244356 for i in range(10**3): %o A244356 tot = 0 %o A244356 for k in range(i,i+n): %o A244356 c = 0 %o A244356 for b in str(k): %o A244356 if b != '0': %o A244356 if k%int(b)!=0: %o A244356 c += 1 %o A244356 if c == len(str(k))-str(k).count('0'): %o A244356 tot += 1 %o A244356 if tot == n: %o A244356 print(i,end=', ') %o A244356 a(2) %Y A244356 Cf. A038772, A237766. %K A244356 nonn,base,look %O A244356 1,1 %A A244356 _Derek Orr_, Jun 26 2014