This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244357 #16 May 22 2025 10:21:39 %S A244357 56,57,67,477,506,507,556,557,577,586,587,596,597,656,657,667,668,697, %T A244357 757,758,778,787,788,857,858,866,867,868,877,897,956,957,976,977,978, %U A244357 4077,4097,4457,4477,4497,4657,4677,4757,4857,4897,4997,5056,5057,5066,5067,5077,5096 %N A244357 Numbers n such that n, n+1, and n+2 are not divisible by any of their nonzero digits. %C A244357 This is a subsequence of A244356. %C A244357 All numbers end in a 6, 7, or 8. %H A244357 Harvey P. Dale, <a href="/A244357/b244357.txt">Table of n, a(n) for n = 1..1000</a> %e A244357 56, 57, and 58 are not divisible by their digits. Thus, 56 is a member of this sequence. %t A244357 SequencePosition[Table[If[NoneTrue[n/Select[IntegerDigits[n],#>0&],IntegerQ], 1,0],{n,5100}],{1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Mar 15 2018 *) %o A244357 (Python) %o A244357 def a(n): %o A244357 for i in range(10**4): %o A244357 tot = 0 %o A244357 for k in range(i,i+n): %o A244357 c = 0 %o A244357 for b in str(k): %o A244357 if b != '0': %o A244357 if k%int(b)!=0: %o A244357 c += 1 %o A244357 if c == len(str(k))-str(k).count('0'): %o A244357 tot += 1 %o A244357 if tot == n: %o A244357 print(i,end=', ') %o A244357 a(3) %Y A244357 Cf. A038772, A244356, A237766. %K A244357 nonn,base %O A244357 1,1 %A A244357 _Derek Orr_, Jun 26 2014