This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244358 #17 Jun 21 2025 10:53:12 %S A244358 56,506,556,586,596,656,667,757,787,857,866,867,956,976,977,5056,5066, %T A244358 5096,5506,5666,5756,5776,5876,5906,5986,5996,6056,6067,6506,6697, %U A244358 6986,7057,7556,7576,7597,7757,7786,7787,7876,7897,7906,7976,7996,8066,8067,8506,8596,8666,8697 %N A244358 Numbers k such that k, k+1, k+2, and k+3 are not divisible by any of their nonzero digits. %C A244358 This is a subsequence of A244357. %C A244358 All numbers end in a 6 or 7. %H A244358 Harvey P. Dale, <a href="/A244358/b244358.txt">Table of n, a(n) for n = 1..1000</a> %e A244358 56, 57, 58, and 59 are not divisible by any of their digits. Thus, 56 is a member of this sequence. %t A244358 SequencePosition[Table[If[NoneTrue[n/(IntegerDigits[n]/.(0->Nothing)),IntegerQ],1,0],{n,9000}],{1,1,1,1}][[;;,1]] (* _Harvey P. Dale_, Jun 06 2025 *) %o A244358 (Python) %o A244358 def a(n): %o A244358 for i in range(10**4): %o A244358 tot = 0 %o A244358 for k in range(i,i+n): %o A244358 c = 0 %o A244358 for b in str(k): %o A244358 if b != '0': %o A244358 if k%int(b)!=0: %o A244358 c += 1 %o A244358 if c == len(str(k))-str(k).count('0'): %o A244358 tot += 1 %o A244358 if tot == n: %o A244358 print(i,end=', ') %o A244358 a(4) %Y A244358 Cf. A038772, A237766, A244357. %K A244358 nonn,base %O A244358 1,1 %A A244358 _Derek Orr_, Jun 26 2014