This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244359 #10 May 22 2025 10:21:38 %S A244359 866,976,7786,8066,8786,8986,9976,70786,77786,79976,80066,80986,87866, %T A244359 89066,89986,98786,99866,99976,700786,707786,709976,770786,778786, %U A244359 778996,780866,788986,789986,799786,799976,800066,800986,809986,879986,887986,888986,889786,890066,890786,890986 %N A244359 Numbers n such that n, n+1, n+2, n+3, and n+4 are not divisible by any of their nonzero digits. %C A244359 This is a subsequence of A244358. %C A244359 All numbers end in a 6 and every number contains some combination of {6,7,8,9,0}. %C A244359 There are no consecutive terms in this sequence. See A237766. %e A244359 866, 867, 868, 869 and 870 are not divisible by any of their nonzero digits. Thus 866 is a member of this sequence. %t A244359 div[n_]:=Module[{nzd=Select[IntegerDigits[n],#!=0&]},NoneTrue[n/nzd, IntegerQ]]; SequencePosition[Table[If[div[n],1,0],{n,900000}],{1,1,1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Dec 11 2018 *) %o A244359 (Python) %o A244359 def a(n): %o A244359 for i in range(10**4): %o A244359 tot = 0 %o A244359 for k in range(i,i+n): %o A244359 c = 0 %o A244359 for b in str(k): %o A244359 if b != '0': %o A244359 if k%int(b)!=0: %o A244359 c += 1 %o A244359 if c == len(str(k))-str(k).count('0'): %o A244359 tot += 1 %o A244359 if tot == n: %o A244359 print(i,end=', ') %o A244359 a(5) %Y A244359 Cf. A038772, A244358, A237766. %K A244359 nonn,base %O A244359 1,1 %A A244359 _Derek Orr_, Jun 26 2014