This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244365 #14 Jan 24 2022 08:47:37 %S A244365 3,5,7,11,13,17,17,19,19,23,23,29,31,31,37,37,41,41,43,47,43,47,53,47, %T A244365 53,53,59,59,61,67,61,67,71,73,67,71,73,71,73,79,83,73,79,83,79,83,89, %U A244365 83,89,89,97,97,101,103,107,101,103,107,109,113,103,107,109 %N A244365 Table read by rows: row n contains all primes p such that prime(n) < p <= floor(prime(n)^(1+1/n)). %C A244365 Length of n-th row = A182134(n); %C A244365 T(n,1) = A000040(n+1); T(n,A182134(n)) = A245396(n). %H A244365 Reinhard Zumkeller, <a href="/A244365/b244365.txt">Rows n = 1..1000 of triangle, flattened</a> %F A244365 T(n,k) = A000040(n+k) for k = 1 .. A182134(n). %e A244365 . n | A182134(n) | A249669(n) | T(n,1) ... T(n,A182134(n)) %e A244365 . ----+------------+------------+---------------------------- %e A244365 . 1 | 1 | 4 | [3] %e A244365 . 2 | 1 | 5 | [5] %e A244365 . 3 | 1 | 8 | [7] %e A244365 . 4 | 1 | 11 | [11] %e A244365 . 5 | 2 | 17 | [13, 17] %e A244365 . 6 | 2 | 19 | [17, 19] %e A244365 . 7 | 2 | 25 | [19, 23] %e A244365 . 8 | 1 | 27 | [23] %e A244365 . 9 | 2 | 32 | [29, 31] %e A244365 . 10 | 2 | 40 | [31, 37] %e A244365 . 11 | 2 | 42 | [37, 41] %e A244365 . 12 | 3 | 49 | [41, 43, 47] %e A244365 . 13 | 3 | 54 | [43, 47, 53] %e A244365 . 14 | 2 | 56 | [47, 53] %e A244365 . 15 | 2 | 60 | [53, 59] %e A244365 . 16 | 3 | 67 | [59, 61, 67] %e A244365 . 17 | 4 | 74 | [61, 67, 71, 73] %e A244365 . 18 | 3 | 76 | [67, 71, 73] %e A244365 . 19 | 4 | 83 | [71, 73, 79, 83] %e A244365 . 20 | 3 | 87 | [73, 79, 83] %e A244365 . 21 | 3 | 89 | [79, 83, 89] %e A244365 . 22 | 2 | 96 | [83, 89] %e A244365 . 23 | 2 | 100 | [89, 97] %e A244365 . 24 | 4 | 107 | [97, 101, 103, 107] %e A244365 . 25 | 5 | 116 | [101, 103, 107, 109, 113] . %o A244365 (Haskell) %o A244365 a244365 n k = a244365_tabf !! (n-1) !! (k-1) %o A244365 a244365_row n = a244365_tabf !! (n-1) %o A244365 a244365_tabf = zipWith farideh (map (+ 1) a000040_list) a249669_list %o A244365 where farideh u v = filter ((== 1) . a010051') [u..v] %o A244365 (PARI) row(n) = my(list=List(), p=prime(n)); forprime(q=nextprime(p+1), p^(1+1/n), listput(list, q)); Vec(list); \\ _Michel Marcus_, Jan 24 2022 %Y A244365 Cf. A182134 (row lengths), A245722 (row products), A245396, A249669, A010051, A000040. %K A244365 nonn,tabf %O A244365 1,1 %A A244365 _Reinhard Zumkeller_, Nov 16 2014