This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244372 #23 Sep 07 2018 17:22:07 %S A244372 1,0,1,0,1,1,0,1,2,1,0,1,5,2,1,0,1,10,6,2,1,0,1,22,16,6,2,1,0,1,45,43, %T A244372 17,6,2,1,0,1,97,113,49,17,6,2,1,0,1,206,300,136,50,17,6,2,1,0,1,450, %U A244372 787,386,142,50,17,6,2,1,0,1,982,2074,1081,409,143,50,17,6,2,1 %N A244372 Number T(n,k) of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows. %H A244372 Alois P. Heinz, <a href="/A244372/b244372.txt">Rows n = 1..141, flattened</a> %e A244372 The A000081(5) = 9 rooted trees with 5 nodes sorted by maximal outdegree are: %e A244372 : o : o o o o o : o o : o : %e A244372 : | : | | / \ / \ / \ : | /|\ : /( )\ : %e A244372 : o : o o o o o o o o : o o o o : o o o o : %e A244372 : | : | / \ | / \ | | : /|\ | : : %e A244372 : o : o o o o o o o o : o o o o : : %e A244372 : | : / \ | | : : : %e A244372 : o : o o o o : : : %e A244372 : | : : : : %e A244372 : o : : : : %e A244372 : : : : : %e A244372 : -1- : ---------------2--------------- : -----3----- : ---4--- : %e A244372 Thus row 5 = [0, 1, 5, 2, 1]. %e A244372 Triangle T(n,k) begins: %e A244372 1; %e A244372 0, 1; %e A244372 0, 1, 1; %e A244372 0, 1, 2, 1; %e A244372 0, 1, 5, 2, 1; %e A244372 0, 1, 10, 6, 2, 1; %e A244372 0, 1, 22, 16, 6, 2, 1; %e A244372 0, 1, 45, 43, 17, 6, 2, 1; %e A244372 0, 1, 97, 113, 49, 17, 6, 2, 1; %e A244372 0, 1, 206, 300, 136, 50, 17, 6, 2, 1; %e A244372 0, 1, 450, 787, 386, 142, 50, 17, 6, 2, 1; %e A244372 0, 1, 982, 2074, 1081, 409, 143, 50, 17, 6, 2, 1; %p A244372 b:= proc(n, i, t, k) option remember; `if`(n=0, 1, %p A244372 `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)* %p A244372 b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) %p A244372 end: %p A244372 T:= (n, k)-> b(n-1$2, k$2) -`if`(k=0, 0, b(n-1$2, k-1$2)): %p A244372 seq(seq(T(n, k), k=0..n-1), n=1..14); %t A244372 b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]]; T[n_, k_] := b[n-1, n-1, k, k] - If[k == 0, 0, b[n-1, n-1, k-1, k-1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Jul 01 2014, translated from Maple *) %Y A244372 Columns k=2-10 give: A244398, A244399, A244400, A244401, A244402, A244403, A244404, A244405, A244406. %Y A244372 T(2n,n) gives A244407(n). %Y A244372 T(2n+1,n) gives A244410(n). %Y A244372 Row sum give A000081. %Y A244372 Cf. A244454. %K A244372 nonn,tabl %O A244372 1,9 %A A244372 _Joerg Arndt_ and _Alois P. Heinz_, Jun 26 2014