cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244378 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + ... + k^17 is prime.

This page as a plain text file.
%I A244378 #14 Sep 08 2022 08:46:08
%S A244378 2,12,34,50,72,104,172,180,198,202,240,252,254,272,300,338,348,374,
%T A244378 494,498,504,578,640,648,652,702,728,804,832,848,892,950,1002,1040,
%U A244378 1060,1070,1134,1158,1184,1364,1378,1464,1564,1598,1608,1624,1630,1678,1688,1704,1734
%N A244378 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + ... + k^17 is prime.
%H A244378 Vincenzo Librandi, <a href="/A244378/b244378.txt">Table of n, a(n) for n = 1..1000</a>
%t A244378 Select[Range[7000], PrimeQ[Total[#^Range[1, 17, 2]] + 1] &]
%o A244378 (Magma) [n: n in [0..2500] | IsPrime(s) where s is 1+&+[n^i: i in [1..17 by 2]]];
%o A244378 (PARI) isok(n) = isprime(1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17); \\ _Michel Marcus_, Jun 27 2014
%o A244378 (Sage)
%o A244378 i,n = var('i,n')
%o A244378 [n for n in (1..2000) if is_prime(1+(n^(2*i+1)).sum(i,0,8))] # _Bruno Berselli_, Jun 27 2014
%Y A244378 Cf. similar sequences listed in A244376.
%K A244378 nonn,easy
%O A244378 1,1
%A A244378 _Vincenzo Librandi_, Jun 27 2014