This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244395 #34 Jun 06 2021 09:00:39 %S A244395 1,1,1,2,3,4,5,8,11,15,20,26,34,46,59,78,101,129,163,209,261,329,412, %T A244395 517,641,798,986,1216,1493,1829,2229,2721,3303,4000,4841,5841,7034, %U A244395 8458,10144,12137,14512,17306,20596,24483,29045,34391,40680,48032,56627,66666 %N A244395 Number of partitions of n in which the largest summand has frequency 1, the next largest summand has frequency at most 2, the third largest has frequency at most 3, etc. %H A244395 Alois P. Heinz, <a href="/A244395/b244395.txt">Table of n, a(n) for n = 0..2000</a> %e A244395 For n=6 the partitions counted are: 6, 51, 42, 411, 321. %p A244395 b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A244395 b(n, i-1, t) +add(b(n-i*j, i-1, t+1), j=1..min(t, n/i)))) %p A244395 end: %p A244395 a:= n-> b(n$2, 1): %p A244395 seq(a(n), n=0..60); # _Alois P. Heinz_, Jul 03 2014 %t A244395 nend = 20; %t A244395 For[n = 1, n <= nend, n++, %t A244395 count[n] = 0; %t A244395 Ip = IntegerPartitions[n]; %t A244395 For[i = 1, i <= Length[Ip], i++, %t A244395 m = Max[Ip[[i]]]; %t A244395 condition = True; %t A244395 Tip = Tally[Ip[[i]]]; %t A244395 For[j = 1, j <= Length[Tip], j++, %t A244395 condition = condition && (Tip[[j]][[2]] <= j)]; %t A244395 If[condition, count[n]++ (* ; Print[Ip[[i]]] *)]]; %t A244395 ] %t A244395 Table[count[i], {i, 1, nend}] %t A244395 (* Second program: *) %t A244395 b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, %t A244395 b[n, i-1, t] + Sum[b[n-i*j, i-1, t+1], {j, 1, Min[t, n/i]}]]]; %t A244395 a[n_] := b[n, n, 1]; %t A244395 a /@ Range[0, 60] (* _Jean-François Alcover_, Jun 06 2021, after _Alois P. Heinz_ *) %Y A244395 Cf. A100471, A100883, A244393, A295261. %K A244395 nonn %O A244395 0,4 %A A244395 _David S. Newman_, Jul 03 2014 %E A244395 More terms from _Alois P. Heinz_, Jul 03 2014