This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244399 #13 Aug 15 2015 12:02:46 %S A244399 1,2,6,16,43,113,300,787,2074,5460,14391,37960,100275,265187,702307, %T A244399 1862463,4945952,13152441,35023003,93385548,249330208,666539949, %U A244399 1784102735,4781254117,12828545419,34459732110,92668129050,249469906115,672296028786,1813606782459 %N A244399 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 3. %H A244399 Alois P. Heinz, <a href="/A244399/b244399.txt">Table of n, a(n) for n = 4..1000</a> %F A244399 a(n) = A000598(n) - A001190(n+1) = A000598(n) - A036656(n+1). %F A244399 a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.81546003317615... and c = 0.5178759064... . - _Vaclav Kotesovec_, Jun 27 2014 %p A244399 b:= proc(n, i, t, k) option remember; `if`(n=0, 1, %p A244399 `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)* %p A244399 b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) %p A244399 end: %p A244399 a:= n-> b(n-1$2, 3$2) -`if`(k=0, 0, b(n-1$2, 2$2)): %p A244399 seq(a(n), n=4..35); %t A244399 b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]//FullSimplify]; a[n_] := b[n-1, n-1, 3, 3] - If[n == 0, 0, b[n-1, n-1, 2, 2]]; Table[a[n], {n, 4, 35}] (* _Jean-François Alcover_, Feb 09 2015, after Maple *) %Y A244399 Column k=3 of A244372. %Y A244399 Cf. A000598, A001190, A036656. %K A244399 nonn %O A244399 4,2 %A A244399 _Joerg Arndt_ and _Alois P. Heinz_, Jun 27 2014