cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244404 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 8.

This page as a plain text file.
%I A244404 #8 Feb 09 2015 11:03:16
%S A244404 1,2,6,17,50,143,416,1199,3473,10042,29089,84259,244316,708679,
%T A244404 2057087,5974077,17359390,50467157,146789962,427148444,1243513350,
%U A244404 3621591235,10551595959,30753712080,89666493709,261522175986,763002239120,2226771020793,6500575182332
%N A244404 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 8.
%H A244404 Alois P. Heinz, <a href="/A244404/b244404.txt">Table of n, a(n) for n = 9..750</a>
%p A244404 b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
%p A244404       `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
%p A244404        b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
%p A244404     end:
%p A244404 a:= n-> b(n-1$2, 8$2) -`if`(k=0, 0, b(n-1$2, 7$2)):
%p A244404 seq(a(n), n=9..40);
%t A244404 b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := b[n - 1, n - 1, 8, 8] - If[n == 0, 0, b[n - 1, n - 1, 7, 7]]; Table[a[n], {n, 9, 40}] (* _Jean-François Alcover_, Feb 09 2015, after Maple *)
%Y A244404 Column k=8 of A244372.
%K A244404 nonn
%O A244404 9,2
%A A244404 _Joerg Arndt_ and _Alois P. Heinz_, Jun 27 2014