cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244407 Number of unlabeled rooted trees with 2n nodes and maximal outdegree (branching factor) n.

This page as a plain text file.
%I A244407 #14 Feb 03 2018 17:03:39
%S A244407 1,2,6,17,50,143,416,1199,3474,10049,29119,84377,244748,710199,
%T A244407 2062274,5991418,17416401,50652248,147384676,429043390,1249508947,
%U A244407 3640449679,10610613552,30937605076,90237313083,263288153074,768449666117,2243530461067,6552016136667
%N A244407 Number of unlabeled rooted trees with 2n nodes and maximal outdegree (branching factor) n.
%H A244407 Alois P. Heinz, <a href="/A244407/b244407.txt">Table of n, a(n) for n = 1..100</a>
%F A244407 a(n) = A244372(2n,n).
%F A244407 a(n) ~ c * d^n / sqrt(n), where d = 2.955765285651994974714817524... is the Otter's rooted tree constant (see A051491), and c = 0.9495793... . - _Vaclav Kotesovec_, Jul 11 2014
%p A244407 b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
%p A244407       `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
%p A244407        b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
%p A244407     end:
%p A244407 a:= n-> b(2*n-1$2, n$2)-b(2*n-1$2, n-1$2):
%p A244407 seq(a(n), n=1..30);
%t A244407 b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := b[2*n - 1, 2 n - 1, n, n] - b[2*n - 1, 2 n - 1, n - 1, n - 1]; Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, Feb 06 2015, after Maple *)
%Y A244407 Cf. A244372, A244410, A051491, A299039.
%K A244407 nonn
%O A244407 1,2
%A A244407 _Joerg Arndt_ and _Alois P. Heinz_, Jun 27 2014