cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244409 Numbers x such that it is possible to find a value k for which Sum_{j=1..x} (x mod j) = Sum_{j=1..k} j.

Original entry on oeis.org

3, 4, 6, 13, 15, 16, 43, 112, 278, 346, 527, 845, 1214, 1612, 2189, 2863, 10278, 610410, 981350, 2054106, 3286515, 3764767, 4293562, 5543363, 5728393, 20142483, 66790186, 67652048, 72730730, 137252581, 198373964, 338557754, 406463074, 687452210, 911028356
Offset: 1

Views

Author

Paolo P. Lava, Jun 27 2014

Keywords

Comments

a(38) > 2 * 10^9. - Hiroaki Yamanouchi, Sep 29 2014

Examples

			If x = 6 we have 6 mod 1 + 6 mod 2 + 6 mod 3 + 6 mod 4 + 6 mod 5 + 6 mod 6 = 0 + 0 + 0 + 2 + 1 + 0 = 3 and 1 + 2 = 3 (k = 2).
If x = 15 we have 15 mod 1 + 15 mod 2 + ... + 15 mod 14 + 15 mod 15 = 0 + 1 + 0 + 3 + 0 + 3 + 1 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 (k = 8).
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q)local a,b,c,k,n;
    for n from 1 to q do a:=add(n mod k,k=1..n); b:=n; c:=0;
    while c<=a do if c=a then lprint(n,b); break; else b:=b+1;
    c:=c+(b mod n); fi; od: od; end: P(10^9);

Formula

A004125(x) = A000217(k).

Extensions

a(18)-a(35) from Hiroaki Yamanouchi, Sep 29 2014