This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244411 #25 May 22 2025 10:21:38 %S A244411 1,4,22,26,49,111,121,202,1001,1111,2285,10001,10201,11111,100001, %T A244411 1000001,1001001,1012101,1100011,1101011,1109111,1111111,3069307, %U A244411 10000001,12028229,12866669,100000001,101000101,110000011,110091011,200010002,10000000001,10011111001 %N A244411 Nonprimes n such that the product of its divisors is a palindrome. %C A244411 Primes trivially satisfy this property and are therefore not included in the sequence. %C A244411 Numbers n such that A136522(A007955(n)) = 1. %C A244411 A number is in the intersection of A002778 and A001358 iff it is in this sequence. %C A244411 a(31) > 2*10^8. %C A244411 a(32) > 4*10^8. - _Chai Wah Wu_, Aug 25 2015 %H A244411 Giovanni Resta, <a href="/A244411/b244411.txt">Table of n, a(n) for n = 1..47</a> (terms < 3.5*10^11) %e A244411 The divisors of 26 are 1,2,13,26. And 1*2*13*26 = 676 is a palindrome. Thus 26 is a member of this sequence. %o A244411 (PARI) rev(n)={r="";for(i=1,#digits(n),r=concat(Str(digits(n)[i]),r));return(eval(r))} %o A244411 for(n=1,2*10^8,if(!isprime(n),d=divisors(n);ss=prod(j=1,#d,d[j]);if(ss==rev(ss),print1(n,", ")))) %o A244411 (Python) %o A244411 import sympy %o A244411 from sympy import isprime %o A244411 from sympy import divisors %o A244411 def rev(n): %o A244411 r = "" %o A244411 for i in str(n): %o A244411 r = i + r %o A244411 return int(r) %o A244411 def a(): %o A244411 for n in range(1,10**8): %o A244411 if not isprime(n): %o A244411 p = 1 %o A244411 for i in divisors(n): %o A244411 p*=i %o A244411 if rev(p)==p: %o A244411 print(n,end=', ') %o A244411 a() %o A244411 (Python) %o A244411 from sympy import divisor_count, sqrt %o A244411 A244411_list = [1] %o A244411 for n in range(1,10**5): %o A244411 d = divisor_count(n) %o A244411 if d > 2: %o A244411 q, r = divmod(d,2) %o A244411 s = str(n**q*(sqrt(n) if r else 1)) %o A244411 if s == s[::-1]: %o A244411 A244411_list.append(n) # _Chai Wah Wu_, Aug 25 2015 %Y A244411 Cf. A007955, A136522, A028980, A002778, A001358. %K A244411 nonn,base,hard %O A244411 1,2 %A A244411 _Derek Orr_, Jun 27 2014 %E A244411 a(31) from _Chai Wah Wu_, Aug 25 2015 %E A244411 a(32)-a(33) from _Giovanni Resta_, Sep 20 2019