This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244419 #55 May 22 2025 10:43:49 %S A244419 1,1,2,-1,2,4,-1,-4,4,8,1,-4,-12,8,16,1,6,-12,-32,16,32,-1,6,24,-32, %T A244419 -80,32,64,-1,-8,24,80,-80,-192,64,128,1,-8,-40,80,240,-192,-448,128, %U A244419 256,1,10,-40,-160,240,672,-448,-1024,256,512,-1,10,60,-160,-560,672,1792,-1024,-2304,512,1024 %N A244419 Coefficient triangle of polynomials related to the Dirichlet kernel. Rising powers. Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)). %C A244419 This is the row reversed version of A180870. See also A157751 and A228565. %C A244419 The Dirichlet kernel is D(n,x) = Sum_{k=-n..n} exp(i*k*x) = 1 + 2*Sum_{k=1..n} T(n,x) = S(n, 2*y) + S(n-1, 2*y) = S(2*n, sqrt(2*(1+y))) with y = cos(x), n >= 0, with the Chebyshev polynomials T (A053120) and S (A049310). This triangle T(n, k) gives in row n the coefficients of the polynomial Dir(n,y) = D(n,x=arccos(y)) = Sum_{m=0..n} T(n,m)*y^m. See A180870, especially the Peter Bala comments and formulas. %C A244419 This is the Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)) due to the o.g.f. for Dir(n,y) given by (1+z)/(1 - 2*y*z + z^2) = G(z)/(1 - y*F(z)) with G(z) = (1+z)/(1+z^2) and F(z) = 2*z/(1+z^2) (see the Peter Bala formula under A180870). For Riordan triangles and references see the W. Lang link 'Sheffer a- and z- sequences' under A006232. %C A244419 The A- and Z- sequences of this Riordan triangle are (see the mentioned W. Lang link in the preceding comment also for the references): The A-sequence has o.g.f. 1+sqrt(1-x^2) and is given by A(2*k+1) = 0 and A(2*k) [2, -1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, -33/2048, -429/32768, -715/65536, ...], k >= 0. (See A098597 and A046161.) %C A244419 The Z-sequence has o.g.f. sqrt((1-x)/(1+x)) and is given by %C A244419 [1, -1, 1/2, -1/2, 3/8, -3/8, 5/16, -5/16, 35/128, -35/128, ...]. (See A001790 and A046161.) %C A244419 The column sequences are A057077, 2*(A004526 with even numbers signed), 4*A008805 (signed), 8*A058187 (signed), 16*A189976 (signed), 32*A189980 (signed) for m = 0, 1, ..., 5. %C A244419 The row sums give A005408 (from the o.g.f. due to the Riordan property), and the alternating row sums give A033999. %C A244419 The row polynomials Dir(n, x), n >= 0, give solutions to the diophantine equation (a + 1)*X^2 - (a - 1)*Y^2 = 2 by virtue of the identity (a + 1)*Dir(n, -a)^2 - (a - 1)*Dir(n, a)^2 = 2, which is easily proved inductively using the recurrence Dir(n, a) = (1 + a)*(-1)^(n-1)*Dir(n-1, -a) + a*Dir(n-1, a) given below by _Wolfdieter Lang_. - _Peter Bala_, May 08 2025 %H A244419 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_kernel">Dirichlet kernel</a>. %F A244419 T(n, m) = [y^m] Dir(n,y) for n >= m >= 0 and 0 otherwise, with the polynomials Dir(y) defined in a comment above. %F A244419 T(n, m) = 2^m*(S(n,m) + S(n-1,m)) with the entries S(n,m) of A049310 given there explicitly. %F A244419 O.g.f. for polynomials Dir(y) see a comment above (Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2))). %F A244419 O.g.f. for column m: ((1 + x)/(1 + x^2))*(2*x/(1 + x^2))^m, m >= 0, (Riordan property). %F A244419 Recurrence for the polynomials: Dir(n, y) = 2*y*Dir(n-1, y) - Dir(n-2, y), n >= 1, with input D(-1, y) = -1 and D(0, y) = 1. %F A244419 Triangle three-term recurrence: T(n,m) = 2*T(n-1,m-1) - T(n-2,m) for n >= m >= 1 with T(n,m) = 0 if 0 <= n < m, T(0,0) = 1, T(-1,1) = 0 and T(n,0) = A057077(n) = (-1)^(floor(n/2)). %F A244419 From _Wolfdieter Lang_, Jul 30 2014: (Start) %F A244419 In analogy to A157751 one can derive a recurrence for the row polynomials Dir(n, y) = Sum_{m=0..n} T(n,m)*y^m also using a negative argument but only one recursive step: Dir(n,y) = (1+y)*(-1)^(n-1)*Dir(n-1,-y) + y*Dir(n-1,y), n >= 1, Dir(0,y) = 1 (Dir(-1,y) = -1). See also A180870 from where this formula can be derived by row reversion. %F A244419 This entails another triangle recurrence T(n,m) = (1 + (-1)^(n-m))*T(n-1,m-1) - (-1)^(n-m)*T(n-1,m), for n >= m >= 1 with T(n,m) = 0 if n < m and T(n,0) = (-1)^floor(n/2). (End) %F A244419 From _Peter Bala_, Aug 14 2022: (Start) %F A244419 The row polynomials Dir(n,x), n >= 0, are related to the Chebyshev polynomials of the first kind T(n,x) by the binomial transform as follows: %F A244419 (2^n)*(x - 1)^(n+1)*Dir(n,x) = (-1) * Sum_{k = 0..2*n+1} binomial(2*n+1,k)*T(k,-x). %F A244419 Note that Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x). (End) %F A244419 From _Peter Bala_, May 04 2025: (Start) %F A244419 For n >= 1, the n-th row polynomial Dir(n, x) = (-1)^n * (U(n, -x) - U(n-1, -x)) = U(2*n, sqrt((1+x)/2)), where U(n, x) denotes the n-th Chebyshev polynomial of the second kind. %F A244419 For n >= 1 and x < 1, Dir(n, x) = (-1)^n * sqrt(2/(1 - x )) * T(2*n+1, sqrt((1 - x)/2)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. %F A244419 Dir(n, x)^2 - 2*x*Dir(n, x)*Dir(n+1, x) + Dir(n+1, x)^2 = 2*(1 + x). %F A244419 Dir(n, x) = (-1)^n * R(n, -2*(x+1)), where R(n, x) is the n-th row polynomial of the triangle A085478. %F A244419 Dir(n, x) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n+k, 2*k) * (2*x + 2)^k. (End) %e A244419 The triangle T(n,m) begins: %e A244419 n\m 0 1 2 3 4 5 6 7 8 9 10 ... %e A244419 0: 1 %e A244419 1: 1 2 %e A244419 2: -1 2 4 %e A244419 3: -1 -4 4 8 %e A244419 4: 1 -4 -12 8 16 %e A244419 5: 1 6 -12 -32 16 32 %e A244419 6: -1 6 24 -32 -80 32 64 %e A244419 7: -1 -8 24 80 -80 -192 64 128 %e A244419 8: 1 -8 -40 80 240 -192 -448 128 256 %e A244419 9: 1 10 -40 -160 240 672 -448 -1024 256 512 %e A244419 10: -1 10 60 -160 -560 672 1792 -1024 -2304 512 1024 %e A244419 ... %e A244419 Example for A-sequence recurrence: T(3,1) = Sum_{j=0..2} A(j)*T(2,j) = 2*(-1) + 0*2 + (-1/2)*4 = -4. Example for Z-sequence recurrence: T(4,0) = Sum_{j=0..3} Z(j)*T(3,j) = 1*(-1) + (-1)*(-4) + (1/2)*4 + (-1/2)*8 = +1. (For the A- and Z-sequences see a comment above.) %e A244419 Example for the alternate recurrence: T(4,2) = 2*T(3,1) - T(3,2) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,2) + T(3,3) = T(3,3) = 8. - _Wolfdieter Lang_, Jul 30 2014 %t A244419 T[n_, k_] := T[n, k] = Which[k == 0, (-1)^Quotient[n, 2], (0 <= n && n < k) || (n == -1 && k == 1), 0, True, 2 T[n-1, k-1] - T[n-2, k]]; %t A244419 Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2019, from Sage *) %o A244419 (Sage) %o A244419 def T(n, k): %o A244419 if k == 0: return (-1)^(n//2) %o A244419 if (0 <= n and n < k) or (n == -1 and k == 1): return 0 %o A244419 return 2*T(n-1, k-1) - T(n-2, k) %o A244419 for n in range(11): [T(n,k) for k in (0..n)] # _Peter Luschny_, Jul 29 2014 %Y A244419 Dir(n, x) : A005408 (x = 1), A002878 (x = 3/2), A001834 (x = 2), A030221 (x = 5/2), A002315 (x = 3), A033890 (x = 7/2), A057080 (x = 4), A057081 (x = 9/2), A054320 (x = 5), A077416 (x = 6), A028230 (x = 7), A159678 (x = 8), A049629 (x = 9), A083043 (x = 10), %Y A244419 (-1)^n * Dir(n, x): A122367 (x = -3/2); A079935 (x = -2), A004253 (x = -5/2), A001653 (x = -3), A049685 (x = -7/2), A070997 (x = -4), A070998 (x = -9/2), A072256(n+1) (x = -5). %Y A244419 Cf. A180870 (row reversed), A157751, A228565, A049310, A053120, A057077, A004526, A008805, A058187, A189976, A189980, A005408, A033999. %K A244419 sign,easy,tabl %O A244419 0,3 %A A244419 _Wolfdieter Lang_, Jul 29 2014