A244420 Numerators of coefficient triangle for expansion of x^n in terms of polynomials Todd(k, x) = T(2*k+1, sqrt(x))/sqrt(x) (A084930), with the Chebyshev polynomials of the first kind (type T).
1, 3, 1, 5, 5, 1, 35, 21, 7, 1, 63, 21, 9, 9, 1, 231, 165, 165, 55, 11, 1, 429, 1287, 715, 143, 39, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 12155, 2431, 1547, 1547, 595, 85, 17, 17, 1, 46189, 37791, 12597, 6783, 2907, 969, 969, 171, 19, 1, 88179, 146965, 101745, 14535, 6783, 20349, 5985, 665, 105, 21, 1
Offset: 0
Examples
The numerator triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 0: 1 1: 3 1 2: 5 5 1 3: 35 21 7 1 4: 63 21 9 9 1 5: 231 165 165 55 11 1 6: 429 1287 715 143 39 13 1 7: 6435 5005 3003 1365 455 105 15 1 8: 12155 2431 1547 1547 595 85 17 17 1 9: 46189 37791 12597 6783 2907 969 969 171 19 1 ... The rational triangle R(n,m) begins: n\m 0 1 2 3 4 5 0: 1 1: 3/4 1/4 2: 5/8 5/16 1/16 3: 35/64 21/64 7/64 1/64 4: 63/128 21/64 9/64 9/256 1/256 5: 231/512 165/512 165/1024 55/1024 11/1024 1/1024 ... The next rows are: n=6: 429/1024, 1287/4096, 715/4096, 143/2048, 39/2048, 13/4096, 1/4096, n=7: 6435/16384, 5005/16384, 3003/16384, 1365/16384, 455/16384, 105/16384, 15/16384, 1/16384, n=8: 12155/32768, 2431/8192, 1547/8192, 1547/16384, 595/16384, 85/8192, 17/8192, 17/65536, 1/65536, n=9: 46189/131072, 37791/131072, 12597/65536, 6783/65536, 2907/65536, 969/65536, 969/262144, 171/262144, 19/262144, 1/262144, ... Expansions: x^2 = 5/8 * Todd(0,x) + 5/16 * Todd(1,x) + 1/16 * Todd(2,x) = 5/8 + (5/16)*(-3 + 4*x) +(1/16)*(5 -20*x + 16*x^2). x^3 = (35*Todd(0, x) + 21*Todd(1, x) + 7*Todd(2, x) + 1*Todd(3, x))/64 = (35 + 21*(-3+4*x) + 7*( 5-20*x+16*x^2) + (-7+56*x-112*x^2+64*x^3))/64. For the Todd polynomials see the coefficient table A084930.
Links
- Wolfdieter Lang, First rows of the triangles.
Formula
a(n, m) = numerator(R(n, m)) with the rationals Riordan matrix elements R(n, m)= [x^m]R(n, x), with the row polynomials R(n, x) generated by ((2 - c(z/4))/(1-z))/(1 - x*(-1 + c(z/4))) = 2*((1+x)*(z-1) + (1-x)*sqrt(1-z))/((1-z)*((1+x)^2*z - 4*x)), where c(x) is the o.g.f. of the Catalan numbers A000108.
The rationals R(n, m) = binomial(2*n+1, m)/2^(2*n). - Wolfdieter Lang, Jun 12 2016
Comments