A244422 Quasi-Riordan triangle ((2-z)/(1-z), -z^2/(1-z)). Row reversed monic Chebyshev T-polynomials without vanishing columns.
2, 1, 0, 1, -2, 0, 1, -3, 0, 0, 1, -4, 2, 0, 0, 1, -5, 5, 0, 0, 0, 1, -6, 9, -2, 0, 0, 0, 1, -7, 14, -7, 0, 0, 0, 0, 1, -8, 20, -16, 2, 0, 0, 0, 0, 1, -9, 27, -30, 9, 0, 0, 0, 0, 0, 1, -10, 35, -50, 25, -2, 0, 0, 0, 0, 0, 1, -11, 44, -77, 55, -11, 0, 0, 0, 0, 0, 0, 1, -12, 54, -112, 105, -36, 2, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 0: 2 1: 1 0 2: 1 -2 0 3: 1 -3 0 0 4: 1 -4 2 0 0 5: 1 -5 5 0 0 0 6: 1 -6 9 -2 0 0 0 7: 1 -7 14 -7 0 0 0 0 8: 1 -8 20 -16 2 0 0 0 0 9: 1 -9 27 -30 9 0 0 0 0 0 10: 1 -10 35 -50 25 -2 0 0 0 0 0 11: 1 -11 44 -77 55 -11 0 0 0 0 0 0 ... Rrev(3, x) = 1 - 3*x = sqrt(x)^3*R(3,1/sqrt(x)) = sqrt(x)^3*(-3/sqrt(x) + 1/sqrt(x)^3 ) = -3*x + 1. Rrev(4, x) = 1 - 4*x + 2*x^2 = sqrt(x)^4*(2 - 4/sqrt(x)^2 + 1/sqrt(x)^4) = 2*x^2 - 4*x + 1. Recurrence: T(4,1) = T(3, 1) - T(2, 0) = -3 -1 = -4.
Links
- Wolfdieter Lang, First rows of the triangle.
Crossrefs
Formula
T(n,k) = [x^k] Rrev(n, x), k=0, 1, ..., n, with the row polynomials Rrev(n, x) = sqrt(x)^n*R(n,1/sqrt(x)), with R(n, x) given in A127672 (monic Chebyshev polynomials of the first kind).
O.g.f. row polynomials Rrev(n,x) = Sum_{k=0..n} T(n,k)*x^k: (2-z)/(1 - z + x*z^2) (quasi-Riordan).
O.g.f. for column number k entries with leading zeros: ((2-x)/(1-x))*(-x^2/(1-x))^k, k > = 0. See A054977, -A000027, A000096, -A005581, A005582, -A005583, A005584.
Recurrence: T(n,k) = T(n-1, k) - T(n-2, k-1), n >= k >= 1, T(n,k) = 0 if n < k, T(0,0) = 2, T(n,0) = 1 if n>=1, (Compare with A061896).
For n >= 1 the entries without trailing zeros are given by T(n,k) = (-1)^k*(n/(n-k))*binomial(n-k,k) where k=0..floor(n/2).
Comments