This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244423 #40 May 22 2025 10:21:39 %S A244423 1,4,22,111,121,202,1001,1111,10001,10201,11111,100001,1000001, %T A244423 1001001,1012101,1100011,1101011,1111111,10000001,100000001,101000101, %U A244423 110000011,200010002,10000000001,10011111001,11000100011,11001010011,11100100111,11101010111,20000100002 %N A244423 Nonprime palindromes n such that the product of divisors of n is also a palindrome. %C A244423 Primes trivially satisfy this property and are therefore not included in the sequence. %C A244423 These are the palindromes in A244411. %H A244423 Chai Wah Wu, <a href="/A244423/b244423.txt">Table of n, a(n) for n = 1..49</a> %H A244423 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a> %H A244423 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a> %e A244423 The divisors of 22 are 1, 2, 11 and 22. 1*2*11*22 = 484 is a palindrome. Since 22 is also a palindrome, 22 is a member of this sequence. %t A244423 palQ[n_] := Block[{d = IntegerDigits@ n}, Reverse@ d == d]; lim = 15000000; Select[Complement[Range@ lim, Prime@ Range@ PrimePi@ lim], And[palQ@ #, palQ[Times @@ Divisors@ #]] &] (* _Michael De Vlieger_, Aug 25 2015 *) %t A244423 Select[Range[200002*10^5],!PrimeQ[#]&&AllTrue[{#,Times@@Divisors[#]},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 28 2020 *) %o A244423 (PARI) rev(n)={r="";dig=digits(n);for(i=1,#dig,r=concat(Str(dig[i]),r));return(eval(r))} %o A244423 for(n=1,10^8,if(rev(n)==n&&(!isprime(n)), d=divisors(n);ss=prod(j=1,#d,d[j]);if(ss==rev(ss),print1(n,", ")))) %o A244423 (PARI) /* david(n) returns the n-th palindrome from _David A. Corneth_, Jun 06 2014 */ %o A244423 david(n)={my(d, i, r); r=vector(#digits(n-10^(#digits(n\11)))+#digits(n\11)); n=n-10^(#digits(n\11)); d=digits(n); for(i=1, #d, r[i]=d[i]; r[#r+1-i]=d[i]); sum(i=1, #r, 10^(#r-i)*r[i])} %o A244423 rev(n)={r="";dig=digits(n);for(i=1,#dig,r=concat(Str(dig[i]),r));return(eval(r))} %o A244423 for(n=2,10^6,pal=david(n);if(!isprime(pal),d=divisors(pal);ss=prod(j=1,#d,d[j]);if(ss==rev(ss),print1(pal,", ")))) %o A244423 (Python) %o A244423 import sympy %o A244423 from sympy import isprime %o A244423 from sympy import divisors %o A244423 def rev(n): %o A244423 r = "" %o A244423 for i in str(n): %o A244423 r = i + r %o A244423 return int(r) %o A244423 def a(): %o A244423 for n in range(1,10**8): %o A244423 if rev(n) == n and not isprime(n): %o A244423 p = 1 %o A244423 for i in divisors(n): %o A244423 p*=i %o A244423 if rev(p)==p: %o A244423 print(n,end=', ') %o A244423 a() %o A244423 (Python) %o A244423 from sympy import divisor_count, sqrt %o A244423 def palgen(l,b=10): # generator of palindromes in base b of length <= 2*l %o A244423 if l > 0: %o A244423 yield 0 %o A244423 for x in range(1,l+1): %o A244423 n = b**(x-1) %o A244423 n2 = n*b %o A244423 for y in range(n,n2): %o A244423 k, m = y//b, 0 %o A244423 while k >= b: %o A244423 k, r = divmod(k,b) %o A244423 m = b*m + r %o A244423 yield y*n + b*m + k %o A244423 for y in range(n,n2): %o A244423 k, m = y, 0 %o A244423 while k >= b: %o A244423 k, r = divmod(k,b) %o A244423 m = b*m + r %o A244423 yield y*n2 + b*m + k %o A244423 A244423_list = [1] %o A244423 for n in palgen(6): %o A244423 d = divisor_count(n) %o A244423 if d > 2: %o A244423 q, r = divmod(d,2) %o A244423 s = str(n**q*(sqrt(n) if r else 1)) %o A244423 if s == s[::-1]: %o A244423 A244423_list.append(n) # _Chai Wah Wu_, Aug 25 2015 %Y A244423 Cf. A244411, A002113. %K A244423 nonn,base %O A244423 1,2 %A A244423 _Derek Orr_, Jun 27 2014 %E A244423 Edited name by _Chai Wah Wu_, Aug 25 2015