cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244453 Prime factors of 2^A054723(n)-1, ordered by increasing n, then by increasing size of the factors.

This page as a plain text file.
%I A244453 #31 Nov 20 2018 22:48:53
%S A244453 23,89,47,178481,233,1103,2089,223,616318177,13367,164511353,431,9719,
%T A244453 2099863,2351,4513,13264529,6361,69431,20394401,179951,3203431780337,
%U A244453 193707721,761838257287,228479,48544121,212885833
%N A244453 Prime factors of 2^A054723(n)-1, ordered by increasing n, then by increasing size of the factors.
%C A244453 Subsequence of A060443.
%C A244453 Prime factors of composite Mersenne numbers; A089162 with the Mersenne primes A000668 removed. - _Jens Kruse Andersen_, Jul 11 2014
%H A244453 Jens Kruse Andersen, <a href="/A244453/b244453.txt">Table of n, a(n) for n = 1..577</a>
%H A244453 Sergey Nikitin, <a href="https://www.researchgate.net/profile/S_Nikitin2/publication/326632583_Euler-Fermat_algorithm_and_some_of_its_applications/links/5b74458592851ca6506380fc/Euler-Fermat-algorithm-and-some-of-its-applications.pdf">Euler-Fermat algorithm and some of its applications</a>, 2018.
%H A244453 Sam Wagstaff, <a href="http://homes.cerias.purdue.edu/~ssw/cun/">The Cunningham Project</a>
%e A244453 A054723(1) = 11. 2^11-1 = 2047 = 23*89. - _Jens Kruse Andersen_, Jul 11 2014
%e A244453 Triangle begins:
%e A244453 23, 89;
%e A244453 47, 178481;
%e A244453 233, 1103, 2089;
%e A244453 223, 616318177;
%e A244453 13367, 164511353;
%e A244453 431, 9719, 2099863;
%e A244453 2351, 4513, 13264529;
%e A244453 6361, 69431, 20394401;
%t A244453 Map[FactorInteger, Select[2^Prime@Range@20 - 1, CompositeQ]][[All, All, 1]] // Flatten (* _Michael De Vlieger_, Nov 20 2018 *)
%o A244453 (PARI) forprime(n=1, 100, m=2^n-1; if(!isprime(m), f=factor(m); for(i=1, #f~, print1(f[i,1]", ")))) \\ _Jens Kruse Andersen_, Jul 11 2014
%Y A244453 Cf. A003260, A016047, A046800, A089162.
%K A244453 nonn,tabf
%O A244453 1,1
%A A244453 _Felix Fröhlich_, Jun 28 2014