This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244466 #45 Aug 11 2014 23:18:46 %S A244466 1,9,14,18,22,46,94,118,166,214,334,358,422,454,526,662,694,718,766, %T A244466 926,934,958,961,1006,1094,1126,1142,1174,1382,1438,1678,1718,1726, %U A244466 1774,1822,1849,1922,1934,1966,2038,2246,2374,2462,2566,2582,2606,2614,2638,2654,2734,2878,2966,2974,3046 %N A244466 Nonprimes n such that mu(phi(n)) = 1. %C A244466 Odd terms > 1 are the square of some prime: a(2) = 9 = 3^2, a(23) = 961 = 31^2, a(36) = 1849 = 43^2, ... . %C A244466 Odd terms > 1 are A078330^2. Even terms are 2*A088179 and 2*A078330^2. - _Robert Israel_, Aug 01 2014 %H A244466 Michael De Vlieger, <a href="/A244466/b244466.txt">Table of n, a(n) for n = 1..11320</a> %e A244466 9 is not prime, phi(9) = 6 and mu(6) = 1, mu(phi(9)) = 1, so 9 is here. %p A244466 filter:= n -> not isprime(n) and numtheory:-mobius(numtheory:-phi(n))=1: %p A244466 select(filter, [$1..10000]); # _Robert Israel_, Aug 01 2014 %t A244466 Select[Range[3200], %t A244466 And[MoebiusMu[EulerPhi[#]] == 1, %t A244466 Not[PrimeQ[#]]] &] (* _Michael De Vlieger_, Aug 06 2014 *) %o A244466 (C) a(n) {return mu(phi(n))==1 ? n : ;} %o A244466 (PARI) for(n=1,10^4,if(moebius(eulerphi(n))==1,print1(n,", "))) \\ _Derek Orr_, Aug 01 2014 %o A244466 (Python) %o A244466 from sympy import totient,factorint,primefactors,isprime %o A244466 [n for n in range(1,10**5) if n == 1 or (not isprime(n) and max(factorint(totient(n)).values()) < 2 and (-1)**len(primefactors(totient(n))) == 1)] # _Chai Wah Wu_, Aug 06 2014 %Y A244466 Cf. A078330, A088179. %K A244466 nonn,easy %O A244466 1,2 %A A244466 _Torlach Rush_, Jun 28 2014