This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244474 #17 Mar 12 2023 10:45:00 %S A244474 2,4,10,17,29,47,79,128,208,337,546,883,1429,2312,3741,6053,9794, %T A244474 15847,25641,41488,67129,108617 %N A244474 4th-largest term in n-th row of Stern's diatomic triangle A002487. %H A244474 Jennifer Lansing, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lansing/lansing2.html">Largest Values for the Stern Sequence</a>, J. Integer Seqs., 17 (2014), #14.7.5. %F A244474 G.f.: (-2-2*x-4*x^2-3*x^3-2*x^4-x^5-3*x^6-2*x^7-x^8-x^9-x^10)/(-1+x+x^2) (conjectured) - _Jean-François Alcover_, Mar 12 2023 %p A244474 A002487 := proc(n,k) %p A244474 option remember; %p A244474 if k =0 then %p A244474 1; %p A244474 elif k = 2^n-1 then %p A244474 n+1 ; %p A244474 elif type(k,'even') then %p A244474 procname(n-1,k/2) ; %p A244474 else %p A244474 procname(n-1,(k-1)/2)+procname(n-1,(k+1)/2) ; %p A244474 end if; %p A244474 end proc: %p A244474 A244474 := proc(n) %p A244474 {seq(A002487(n,k),k=0..2^n-1)} ; %p A244474 sort(%) ; %p A244474 op(-4,%) ; %p A244474 end proc: %p A244474 for n from 3 do %p A244474 print(A244474(n)) ; %p A244474 od: # _R. J. Mathar_, Oct 25 2014 %t A244474 s[n_] := s[n] = Switch[n, 0, 0, 1, 1, _, If[EvenQ[n], s[n/2], s[(n - 1)/2] + s[(n - 1)/2 + 1]]]; %t A244474 T = Table[s[n], {n, 0, 2^25}] // Flatten // SplitBy[#, If[# == 1, 1, 0]&]& // DeleteCases[#, {1}]&; %t A244474 Union[#][[-4]]& /@ T[[5 ;;]] (* _Jean-François Alcover_, Mar 12 2023 *) %o A244474 (Python) %o A244474 from itertools import product %o A244474 from functools import reduce %o A244474 def A244474(n): return sorted(set(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if y else (x[0]+x[1],x[1]),k,(1,0))) for k in product((False,True),repeat=n)),reverse=True)[3] # _Chai Wah Wu_, Jun 20 2022 %Y A244474 Cf. A002487, A244472, A244473, A244475, A244476. %K A244474 nonn,more %O A244474 3,1 %A A244474 _N. J. A. Sloane_, Jul 01 2014 %E A244474 a(24) from _Jean-François Alcover_, Mar 12 2023