This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244475 #29 Mar 13 2023 06:27:22 %S A244475 1,3,9,16,27,46,76,123,207,335,545,882,1428,2311,3740,6051,9791,15842, %T A244475 25633,41475,67108,108583,175691,284274,459965,744239,1204204,1948443, %U A244475 3152647,5101090,8253737 %N A244475 5th-largest term in the n-th row of Stern's diatomic triangle A002487. %H A244475 Jennifer Lansing, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lansing/lansing2.html">Largest Values for the Stern Sequence</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.7.5. %F A244475 Conjectured g.f.: -x^3*(x^14+ x^13+ x^12+ 2*x^11 +3*x^10 +5*x^9 +8*x^8 +x^7 +3*x^6 +3*x^5 +2*x^4 +4*x^3 +5*x^2 +2*x +1) / (x^2+x-1). - _Alois P. Heinz_, Jun 20 2022 %p A244475 A002487 := proc(n,k) %p A244475 option remember; %p A244475 if k =0 then %p A244475 1; %p A244475 elif k = 2^n-1 then %p A244475 n+1 ; %p A244475 elif type(k,'even') then %p A244475 procname(n-1,k/2) ; %p A244475 else %p A244475 procname(n-1,(k-1)/2)+procname(n-1,(k+1)/2) ; %p A244475 end if; %p A244475 end proc: %p A244475 A244475 := proc(n) %p A244475 {seq(A002487(n,k),k=0..2^n-1)} ; %p A244475 sort(%) ; %p A244475 op(-5,%) ; %p A244475 end proc: %p A244475 for n from 3 do %p A244475 print(A244475(n)) ; %p A244475 od: # _R. J. Mathar_, Oct 25 2014 %t A244475 s[n_, k_] := s[n, k] = Which[k == 0, 1, k == 2^n-1, n+1, EvenQ[k], s[n-1, k/2], True, s[n-1, (k-1)/2] + s[n-1, (k+1)/2]]; %t A244475 row[n_] := Table[s[n, k], {k, 0, 2^n-1}]; %t A244475 a[n_] := If[n == 3, 1, Union[row[n]][[-5]]]; %t A244475 Table[Print[n, " ", a[n]]; a[n], {n, 3, 23}] (* _Jean-François Alcover_, Mar 13 2023, after _R. J. Mathar_ *) %o A244475 (Python) %o A244475 from itertools import product %o A244475 from functools import reduce %o A244475 def A244475(n): return sorted(set(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if y else (x[0]+x[1],x[1]),k,(1,0))) for k in product((False,True),repeat=n)),reverse=True)[4] # _Chai Wah Wu_, Jun 19 2022 %Y A244475 Cf. A002487, A244472, A244473, A244474, A244476. %K A244475 nonn,more %O A244475 3,2 %A A244475 _N. J. A. Sloane_, Jul 01 2014 %E A244475 a(24)-a(25) from _Alois P. Heinz_, Jun 19 2022 %E A244475 a(26)-a(33) from _Chai Wah Wu_, Jun 20 2022