cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244489 Triangle read by rows: T(n,k) = Sum_{j=k..n} binomial(n,j)*Stirling_2(j,k)*Bell(n-j), where Bell(n) = A000110(n), for n >= 1, 0 <= k <= n-1.

Original entry on oeis.org

1, 2, 3, 5, 10, 6, 15, 37, 31, 10, 52, 151, 160, 75, 15, 203, 674, 856, 520, 155, 21, 877, 3263, 4802, 3556, 1400, 287, 28, 4140, 17007, 28337, 24626, 11991, 3290, 490, 36, 21147, 94828, 175896, 174805, 101031, 34671, 6972, 786, 45, 115975, 562595, 1146931, 1279240, 853315, 350889, 88977, 13620, 1200, 55
Offset: 1

Views

Author

N. J. A. Sloane, Jul 04 2014

Keywords

Examples

			Triangle begins:
1
2 3
5 10 6
15 37 31 10
52 151 160 75 15
203 674 856 520 155 21
877 3263 4802 3556 1400 287 28
4140 17007 28337 24626 11991 3290 490 36
...
		

Crossrefs

Same as A049020 (which is the main entry for this triangle) except the present sequence has an extra 1 at the end of each row. - R. J. Mathar and N. J. A. Sloane, May 17 2016

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j] StirlingS2[j, k] BellB[n-j], {j, k, n}];
    Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Oct 09 2018 *)