cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244491 Number of minimal idempotent generating sets for the singular part P_n \ S_n of the partition monoid P_n.

Original entry on oeis.org

1, 1, 3, 20, 201, 2604, 40915, 754368, 15960945, 381141008, 10139372451, 297356237760, 9530800099513, 331453265976000, 12430323314648499, 500046099516905984, 21478615942550889825, 981110493372418629888, 47489191763845877910595
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2014

Keywords

Programs

  • Maple
    A038205 := proc(n)
        option remember ;
        if n = 0 then
            1;
        elif n <=2 then
            0 ;
        else
            (n-1)*procname(n-1)+(n-1)*(n-2)*procname(n-3) ;
        end if;
    end proc:
    A244490 := proc(n,k)
        add((-1)^i*binomial(k,2*i)*doublefactorial(2*i-1)*n^(k-2*i),i=0..floor(k/2)) ;
    end proc:
    A244491 := proc(n)
        add(binomial(n,k)*A038205(k)*A244490(n,n-k),k=0..n) ;
    end proc:
    seq(A244491(n),n=0..30) ; # R. J. Mathar, Aug 26 2014
  • Mathematica
    a05[n_] := SeriesCoefficient[Exp[-x - x^2/2]/(1 - x), {x, 0, n}]*n!;
    a90[n_, k_] := Sum[(-1)^i*Binomial[k, 2i]*(2i-1)!!*n^(k-2*i), {i, 0, k/2}];
    a[n_] := Sum[Binomial[n, k]*a05[k]*a90[n, n - k], {k, 0, n}];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 01 2017, after R. J. Mathar *)

Formula

An explicit formula is given in Th. 7.13 of East-Gray.