This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244492 #23 Jul 16 2022 11:49:11 %S A244492 1,0,3,3,0,6,0,15,0,10,15,0,45,0,15,0,105,0,105,0,21,105,0,420,0,210, %T A244492 0,28,0,945,0,1260,0,378,0,36,945,0,4725,0,3150,0,630,0,45 %N A244492 Triangle read by rows: T(n,k) (n>=2, 0 <= k <= n-2) = n!/(2^i*i!*k!), where k=n-2i (or 0 for entries with wrong parity). %H A244492 J. East and R. D. Gray, <a href="http://arxiv.org/abs/1404.2359">Idempotent generators in finite partition monoids and related semigroups</a>, arXiv preprint arXiv:1404.2359 [math.GR], 2014-2016. %e A244492 Triangle begins: %e A244492 1; %e A244492 0, 3; %e A244492 3, 0, 6; %e A244492 0, 15, 0, 10; %e A244492 15, 0, 45, 0, 15; %e A244492 0, 105, 0, 105, 0, 21; %e A244492 105, 0, 420, 0, 210, 0, 28; %e A244492 0, 945, 0, 1260, 0, 378, 0, 36; %e A244492 945, 0, 4725, 0, 3150, 0, 630, 0, 45; %e A244492 ... %t A244492 T[n_, k_] := With[{i = (n-k)/2}, If[EvenQ[n-k], n!/(2^i i! k!), 0]]; %t A244492 Table[T[n, k], {n, 2, 10}, {k, 0, n-2}] // Flatten (* _Jean-François Alcover_, Nov 25 2018 *) %Y A244492 This is A099174 without the two rightmost diagonals. %K A244492 nonn,tabl %O A244492 0,3 %A A244492 _N. J. A. Sloane_, Jul 05 2014