A244496 Lexicographically earliest sequence S of integers with property that if a vertical line is drawn between any pair of adjacent digits p and q, say, the number Z formed by the p digits to the left of the line is divisible by p.
1, 2, 3, 11, 5, 6, 4, 8, 12, 13, 15, 21, 22, 24, 17, 16, 25, 19, 7, 23, 27, 9, 28, 41, 51, 31, 26, 42, 32, 43, 52, 44, 45, 35, 55, 59, 111, 53, 29, 56, 48, 46, 112, 57, 36, 33, 115, 71, 61, 121, 116, 81, 122, 123, 124, 39, 125, 91, 62, 119, 117, 126, 128, 82, 64, 47, 151, 37, 129, 152, 84, 83, 153
Offset: 1
Examples
Example:a) draw a line between 6 and 4, for instance -- thus p = 6: S = 1,2,3,11,5,6|,4, b) concatenate the last 6 digits before the line (to get Z): Z = 231156 c) Z/p is an integer (indeed, Z/6 = 38526) Here are notes on the initial terms: Z / p = integer (Z ends in p and has digit-length p) 1 / 1 = 1 12 / 2 = 6 123 / 3 = 41 1 / 1 = 1 1 / 1 = 1 23115 / 5 = 4623 231156 / 6 = 38526 1564 / 4 = 391 23115648 / 8 = 2889456 1 / 1 = 1 12 / 2 = 6 1 / 1 = 1 213 / 3 = 71 1 / 1 = 1 21315 / 5 = 4263 52 / 2 = 26 1 / 1 = 1 12 / 2 = 6 22 / 2 = 11 22 / 2 = 11 2224 / 4 = 556 1 / 1 = 1 1222417 / 7 = 174631 1 / 1 = 1 241716 / 6 = 40286 62 / 2 = 31 71625 / 5 = 14325 1 / 1 = 1 417162519 / 9 = 46351391 1625197 / 7 = 232171 72 / 2 = 36 723 / 3 = 241 32 / 2 = 16 1972327 / 7 = 281761 ...
References
- Eric Angelini, Posting to Sequence Fans Mailing List, Jun 26 2014
Links
- Jean-Marc Falcoz, Table of n, a(n) for n = 1..10009
Programs
-
Mathematica
s={1,2,3,11,5,6,4};t=Flatten[IntegerDigits[s]];r=Select[Complement[Select[Range[60000],MemberQ[IntegerDigits[#],0]==False&],s],Intersection[Partition[IntegerDigits[#],2,1],IntegerDigits[{14,18,34,38,54,58,74,78,94,98}]]=={}&];Do[c=1;While[d=IntegerDigits[r[[c]]];Union[Table[IntegerQ[FromDigits[Take[Join[t,Take[d,i]],-d[[i]]]]/d[[i]]],{i,Length[d]}]]!={True},c++];AppendTo[s,r[[c]]];r=Delete[r,c];t=Take[Join[t,d],-9],{10002}];s (* Hans Havermann, Jul 12 2014 *)
Extensions
More terms from Jean-Marc Falcoz, Jul 05 2014
Comments