A244498 Number of magic labelings of the nodes of the 4 X 4 grid graph with magic sum n.
1, 36, 446, 3172, 15891, 62408, 204828, 585672, 1501269, 3521452, 7674810, 15723500, 30556903, 56739216, 101252408, 174482832, 291507177, 473741364, 751024438, 1164218484, 1768415099, 2636848984, 3865629780, 5579414360, 7938153405, 11145058236, 15455946546, 21190138876, 28743091407
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
PARI
Vec((1 + 26*x + 131*x^2 + 212*x^3 + 131*x^4 + 26*x^5 + x^6) / ((1 - x)^10) + O(x^40)) \\ Colin Barker, Jan 11 2017
Formula
G.f.: (1 + 26*x + 131*x^2 + 212*x^3 + 131*x^4 + 26*x^5 + x^6) / ((1 - x)^10).
From Colin Barker, Jan 11 2017: (Start)
a(n) = (7560 + 34164*n + 67044*n^2 + 75190*n^3 + 53382*n^4 + 25095*n^5 + 7896*n^6 + 1620*n^7 + 198*n^8 + 11*n^9) / 7560.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>9.
(End)
Comments