cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244500 Number T(n, k) of ways to place k points on an n X n X n triangular grid so that no pair of them has distance sqrt(3). Triangle read by rows.

This page as a plain text file.
%I A244500 #36 Feb 16 2025 08:33:23
%S A244500 1,1,1,3,3,1,1,6,12,8,1,10,36,55,33,9,1,15,87,248,378,339,187,63,12,1,
%T A244500 1,21,180,820,2190,3606,3716,2340,825,125,1,28,333,2212,9110,24474,
%U A244500 43928,53018,42774,22792,7945,1764,196,1,36,567,5163,30300,121077,339621
%N A244500 Number T(n, k) of ways to place k points on an n X n X n triangular grid so that no pair of them has distance sqrt(3). Triangle read by rows.
%C A244500 In the following triangular grid points x have Euclidean distance sqrt(3) from point o. It is the second closest distance possible among grid points.
%C A244500       x
%C A244500      . .
%C A244500     . o .
%C A244500    x . . x
%C A244500 Triangle T(n, k) is irregular: 0 <= k <= max(n), where max(n), the maximal number of points that can be placed on the grid, is:
%C A244500   for n = 3j-2:            max(n) = A000326(j) = j(3j-1)/2;
%C A244500   for n = 3j-1 or n = 3j:  max(n) = A045943(j) = 3j(j+1)/2; j = 1,2,3,...
%C A244500 Empirical: (1) The number of ways to place the maximal number of points for grid sizes n = 3j are cubes of Catalan numbers, i.e., for n = 3j: T(n, max(n)) = C(j+1)^3 = A033536(j+1). (2) For n = 3j-2: T(n, max(n)) = A244506(n) = A244507^2(n). (3) For n = 3j-1: T(n, max(n)) = A000012(n) = 1 and T(n, max(n)-1) = 3j^2.
%C A244500 Row n is also the coefficients of the independence polynomial of the n-triangular honeycomb acute knight graph. - _Eric W. Weisstein_, May 21 2017
%H A244500 Heinrich Ludwig, <a href="/A244500/b244500.txt">Table of n, a(n) for n = 1..153</a>
%H A244500 Stan Wagon, <a href="http://www.jstor.org/stable/10.4169/college.math.j.45.4.278">Graph Theory Problems from Hexagonal and Traditional Chess</a>, The College Mathematics Journal, Vol. 45, No. 4, September 2014, pp. 278-287.
%H A244500 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependencePolynomial.html">Independence Polynomial</a>
%e A244500 On an 8 X 8 X 8 grid there is T(8, 18) = 1 way to place 18 points (x) so that no pair of points has the distance square root of 3.
%e A244500          x
%e A244500         x x
%e A244500        . . .
%e A244500       x . . x
%e A244500      x x . x x
%e A244500     . . . . . .
%e A244500    x . . x . . x
%e A244500   x x . x x . x x
%e A244500 Continuation of this pattern will give the unique maximal solution for all n = 3j-1.
%e A244500 Triangle T(n, k) begins:
%e A244500   1,  1;
%e A244500   1,  3,   3,   1;
%e A244500   1,  6,  12,   8;
%e A244500   1, 10,  36,  55,   33,    9;
%e A244500   1, 15,  87, 248,  378,  339,  187,   63,  12,   1;
%e A244500   1, 21, 180, 820, 2190, 3606, 3716, 2340, 825, 125;
%e A244500 First row refers to n = 1.
%Y A244500 Cf. A000108, A000326, A033536,  A045943, A244506, A244507.
%Y A244500 Cf. A000217 (column 2), A086274 (1/3 * column 3), A244501 (column 4), A244502 (column 5), A244503 (column 6).
%Y A244500 Cf. A287195 (length of row n). - _Eric W. Weisstein_, May 21 2017
%Y A244500 Cf. A287204 (row sums). - _Eric W. Weisstein_, May 21 2017
%K A244500 nonn,tabf
%O A244500 1,4
%A A244500 _Heinrich Ludwig_, Jun 29 2014