A244501 Number of ways to place 3 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).
1, 8, 55, 248, 820, 2212, 5163, 10815, 20833, 37540, 64067, 104518, 164150, 249568, 368935, 532197, 751323, 1040560, 1416703, 1899380, 2511352, 3278828, 4231795, 5404363, 6835125, 8567532, 10650283, 13137730, 16090298, 19574920, 23665487, 28443313, 33997615
Offset: 2
Links
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
CoefficientList[Series[-(6*x^7-17*x^6+14*x^5-6*x^4-4*x^3+20*x^2+x+1) / (x-1)^7, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 03 2014 after Colin Barker *)
-
PARI
Vec(-x^2*(6*x^7-17*x^6+14*x^5-6*x^4-4*x^3+20*x^2+x+1)/(x-1)^7 + O(x^100)) \\ Colin Barker, Jun 29 2014
Formula
a(n) = 1/48*n^6 + 1/16*n^5 - 13/16*n^4 + 61/48*n^3 + 247/24*n^2 - 293/6*n + 6 for n >= 3.
G.f.: -x^2*(6*x^7 - 17*x^6 + 14*x^5 - 6*x^4 - 4*x^3 + 20*x^2 + x + 1) / (x-1)^7. - Colin Barker, Jun 29 2014
Comments