A244503 Number of ways to place 5 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).
9, 339, 3606, 24474, 121077, 475353, 1568712, 4524540, 11722134, 27828138, 61442460, 127616970, 251577939, 474068124, 858822579, 1502804622, 2549955858, 4209357693, 6778862319, 10675429650, 16473604089, 24953782251, 37162160802, 54484513344, 78736227726
Offset: 4
Links
- Heinrich Ludwig, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Programs
-
Mathematica
CoefficientList[Series[-3*(5*x^13 -15*x^12 -26*x^11 +228*x^10 -584*x^9 +706*x^8 -162*x^7 -542*x^6 +766*x^5 -924*x^4 +656*x^3 +124*x^2 +80*x +3) / (x-1)^11, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 03 2014 after Colin Barker *)
Formula
a(n) = 1/3840*n^10 + 1/768*n^9 - 13/384*n^8 - 7/384*n^7 + 1589/768*n^6 - 24619/3840*n^5 - 1561/32*n^4 + 20965/64*n^3 - 11101/240*n^2 - 85143/20*n + 9711 for n >= 7.
G.f.: -3*x^4*(5*x^13 - 15*x^12 - 26*x^11 + 228*x^10 - 584*x^9 + 706*x^8 - 162*x^7 - 542*x^6 + 766*x^5 - 924*x^4 + 656*x^3 + 124*x^2 + 80*x + 3) / (x - 1)^11. - Colin Barker, Jun 29 2014
Comments