cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244503 Number of ways to place 5 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).

Original entry on oeis.org

9, 339, 3606, 24474, 121077, 475353, 1568712, 4524540, 11722134, 27828138, 61442460, 127616970, 251577939, 474068124, 858822579, 1502804622, 2549955858, 4209357693, 6778862319, 10675429650, 16473604089, 24953782251, 37162160802, 54484513344, 78736227726
Offset: 4

Views

Author

Heinrich Ludwig, Jun 29 2014

Keywords

Comments

sqrt(3) is the second closest (Euclidean) distance for a pair of points in a triangular grid. For illustration see A244500.
All elements of the sequence are multiples of 3.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-3*(5*x^13 -15*x^12 -26*x^11 +228*x^10 -584*x^9 +706*x^8 -162*x^7 -542*x^6 +766*x^5 -924*x^4 +656*x^3 +124*x^2 +80*x +3) / (x-1)^11, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 03 2014 after Colin Barker *)

Formula

a(n) = 1/3840*n^10 + 1/768*n^9 - 13/384*n^8 - 7/384*n^7 + 1589/768*n^6 - 24619/3840*n^5 - 1561/32*n^4 + 20965/64*n^3 - 11101/240*n^2 - 85143/20*n + 9711 for n >= 7.
G.f.: -3*x^4*(5*x^13 - 15*x^12 - 26*x^11 + 228*x^10 - 584*x^9 + 706*x^8 - 162*x^7 - 542*x^6 + 766*x^5 - 924*x^4 + 656*x^3 + 124*x^2 + 80*x + 3) / (x - 1)^11. - Colin Barker, Jun 29 2014