cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244519 Expansion of Product_{n>=1} (1 + H(x^n)) where H(x) is the g.f. of A000081.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 35, 76, 175, 414, 1009, 2510, 6382, 16448, 42961, 113352, 301715, 808932, 2182739, 5921803, 16143975, 44199809, 121477237, 335015538, 926814691, 2571322157, 7152404733, 19942874638, 55729271645, 156051344975, 437801148097, 1230423785329, 3463777894236, 9766002585763, 27574869734583, 77965430442158
Offset: 0

Views

Author

Joerg Arndt, Jul 10 2014

Keywords

Comments

Which combinatorial objects does this sequence count?

Crossrefs

Cf. A001372 (expansion of 1/Product_{n>=1} (1 - H(x^n))).

Programs

  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
    A000081=concat([0], A);
    H(t)=subst(Ser(A000081, 't), 't, t);
    x='x+O('x^N);
    T=prod(n=1,N, 1 + H(x^n));
    Vec(T)