This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244523 #14 Feb 11 2015 06:05:36 %S A244523 1,0,1,0,1,0,1,1,0,1,2,0,1,5,0,1,10,1,0,1,21,3,0,1,42,9,0,1,87,25,0,1, %T A244523 178,66,2,0,1,371,170,6,0,1,773,431,21,0,1,1630,1076,63,0,1,3447,2665, %U A244523 185,1,0,1,7346,6560,512,7,0,1,15712,16067,1403,26,0,1,33790,39219,3750,91,0,1,72922,95476,9928,291 %N A244523 Irregular triangle read by rows: T(n,k) is the number of identity trees with n nodes and maximal branching factor k. %C A244523 Row sums give A004111. %H A244523 Joerg Arndt and Alois P. Heinz, <a href="/A244523/b244523.txt">Rows n = 1..285, flattened</a> %e A244523 Triangle starts: %e A244523 01: 1, %e A244523 02: 0, 1, %e A244523 03: 0, 1, %e A244523 04: 0, 1, 1, %e A244523 05: 0, 1, 2, %e A244523 06: 0, 1, 5, %e A244523 07: 0, 1, 10, 1, %e A244523 08: 0, 1, 21, 3, %e A244523 09: 0, 1, 42, 9, %e A244523 10: 0, 1, 87, 25, %e A244523 11: 0, 1, 178, 66, 2, %e A244523 12: 0, 1, 371, 170, 6, %e A244523 13: 0, 1, 773, 431, 21, %e A244523 14: 0, 1, 1630, 1076, 63, %e A244523 15: 0, 1, 3447, 2665, 185, 1, %e A244523 16: 0, 1, 7346, 6560, 512, 7, %e A244523 17: 0, 1, 15712, 16067, 1403, 26, %e A244523 18: 0, 1, 33790, 39219, 3750, 91, %e A244523 19: 0, 1, 72922, 95476, 9928, 291, %e A244523 20: 0, 1, 158020, 231970, 25969, 885, 3, %e A244523 21: 0, 1, 343494, 562736, 67462, 2588, 15, %e A244523 22: 0, 1, 749101, 1363640, 174039, 7373, 70, %e A244523 23: 0, 1, 1638102, 3301586, 446884, 20555, 256, %e A244523 24: 0, 1, 3591723, 7988916, 1142457, 56413, 884, %e A244523 25: 0, 1, 7893801, 19322585, 2911078, 152812, 2840, 3, %e A244523 ... %e A244523 The A004111(7) = 12 level-sequences and the branching sequences for the identity trees with 7 nodes are (dots for zeros), together with the maximal branching factors, are: %e A244523 01: [ . 1 2 3 4 5 6 ] [ 1 1 1 1 1 1 . ] 1 %e A244523 02: [ . 1 2 3 4 5 4 ] [ 1 1 1 2 1 . . ] 2 %e A244523 03: [ . 1 2 3 4 5 3 ] [ 1 1 2 1 1 . . ] 2 %e A244523 04: [ . 1 2 3 4 5 2 ] [ 1 2 1 1 1 . . ] 2 %e A244523 05: [ . 1 2 3 4 5 1 ] [ 2 1 1 1 1 . . ] 2 %e A244523 06: [ . 1 2 3 4 3 2 ] [ 1 2 2 1 . . . ] 2 %e A244523 07: [ . 1 2 3 4 3 1 ] [ 2 1 2 1 . . . ] 2 %e A244523 08: [ . 1 2 3 4 2 3 ] [ 1 2 1 1 . 1 . ] 2 %e A244523 09: [ . 1 2 3 4 2 1 ] [ 2 2 1 1 . . . ] 2 %e A244523 10: [ . 1 2 3 4 1 2 ] [ 2 1 1 1 . 1 . ] 2 %e A244523 11: [ . 1 2 3 2 1 2 ] [ 2 2 1 . . 1 . ] 2 %e A244523 12: [ . 1 2 3 1 2 1 ] [ 3 1 1 . 1 . . ] 3 %e A244523 This gives row n=7: [0, 1, 10, 1, 0, 0, ... ]. %p A244523 b:= proc(n, i, t, k) option remember; `if`(n=0, 1, %p A244523 `if`(i<1, 0, add(binomial(b(i-1$2, k$2), j)* %p A244523 b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) %p A244523 end: %p A244523 g:= proc(n) local k; if n=1 then 0 else %p A244523 for k while T(n, k)>0 do od; k-1 fi %p A244523 end: %p A244523 T:= (n, k)-> b(n-1$2, k$2) -`if`(k=0, 0, b(n-1$2, k-1$2)): %p A244523 seq(seq(T(n, k), k=0..g(n)), n=1..25); %t A244523 b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1, k, k], j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]]; g[n_] := If[ n == 1 , 0, For[k=1, T[n, k]>0 , k++]; k-1]; T[n_, k_] := b[n-1, n-1, k, k] - If[k == 0, 0, b[n-1, n-1, k-1, k-1]]; Table[Table[T[n, k], {k, 0, g[n]}], {n, 1, 25}] // Flatten (* _Jean-François Alcover_, Feb 11 2015, after Maple *) %Y A244523 Columns k=0-10 give: A000007, A000012 (for n>0), A245747, A245748, A245749, A245750, A245751, A245752, A245753, A245754, A245755. %Y A244523 Cf. A004111 (identity trees), A244372 (unlabeled rooted trees by outdegree). %K A244523 nonn,tabf %O A244523 1,11 %A A244523 _Joerg Arndt_ and _Alois P. Heinz_, Jul 30 2014