cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244526 Expansion of f(-x^3, -x^5)^2 in powers of x where f() is Ramanujan's two-variable theta function.

This page as a plain text file.
%I A244526 #10 Feb 16 2025 08:33:23
%S A244526 1,0,0,-2,0,-2,1,0,2,0,1,0,0,0,2,0,0,-2,2,-2,0,-2,0,-2,0,0,0,0,1,0,0,
%T A244526 0,2,-2,0,0,3,0,2,-2,0,0,2,0,2,0,0,-2,0,0,0,-2,0,-2,0,0,0,-2,0,0,2,0,
%U A244526 0,-2,0,-2,1,0,2,0,0,-2,2,-2,2,0,0,0,3,0,0
%N A244526 Expansion of f(-x^3, -x^5)^2 in powers of x where f() is Ramanujan's two-variable theta function.
%H A244526 G. C. Greubel, <a href="/A244526/b244526.txt">Table of n, a(n) for n = 0..1000</a>
%H A244526 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A244526 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A244526 Euler transform of period 8 sequence [ 0, 0, -2, 0, -2, 0, 0, -2, ...].
%F A244526 G.f.: f(-x^3, -x^5)^2 = (Sum_{k in Z} (-1)^k * x^(4*k^2 - k))^2.
%F A244526 Convolution square of A244465.
%F A244526 a(9*n + 4) = a(9*n + 7) = 0. a(49*n + 6) = a(n).
%e A244526 G.f. = 1 - 2*x^3 - 2*x^5 + x^6 + 2*x^8 + x^10 + 2*x^14 - 2*x^17 + 2*x^18 + ...
%e A244526 G.f. = q - 2*q^25 - 2*q^41 + q^49 + 2*q^65 + q^81 + 2*q^113 - 2*q^137 + ...
%t A244526  QP := QPochhammer; A244526[n_]:= SeriesCoefficient[(QP[q^3, q^8]*QP[q^5, q^8]*QP[q^8])^2, {q, 0, n}]; Table[A244526[n], {n, 0, 50}] (* _G. C. Greubel_, Dec 25 2017 *)
%o A244526 (PARI) {a(n) = (-1)^n * sum(k=0, n, issquare(16*k + 1) * issquare(16*(n-k) + 1))};
%Y A244526 Cf. A244465.
%K A244526 sign
%O A244526 0,4
%A A244526 _Michael Somos_, Jun 29 2014