This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244530 #22 Sep 07 2018 21:12:11 %S A244530 1,0,1,0,1,1,0,4,0,1,0,11,2,0,1,0,36,5,0,0,1,0,117,11,3,0,0,1,0,393, %T A244530 28,7,0,0,0,1,0,1339,78,8,4,0,0,0,1,0,4630,201,21,9,0,0,0,0,1,0,16193, %U A244530 532,55,10,5,0,0,0,0,1,0,57201,1441,121,11,11,0,0,0,0,0,1 %N A244530 Number T(n,k) of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows. %C A244530 T(1,0) = 1 by convention. %H A244530 Alois P. Heinz, <a href="/A244530/b244530.txt">Rows n = 1..141, flattened</a> %e A244530 T(5,1) = 11: %e A244530 o o o o o o o o o o o %e A244530 | | | | / \ / \ / \ | /|\ /|\ /|\ %e A244530 o o o o o o o o o o o o o o o o o o o o %e A244530 | | / \ / \ | | | | /|\ | | | %e A244530 o o o o o o o o o o o o o o o o %e A244530 | / \ | | | | %e A244530 o o o o o o o %e A244530 | %e A244530 o %e A244530 Triangle T(n,k) begins: %e A244530 1; %e A244530 0, 1; %e A244530 0, 1, 1; %e A244530 0, 4, 0, 1; %e A244530 0, 11, 2, 0, 1; %e A244530 0, 36, 5, 0, 0, 1; %e A244530 0, 117, 11, 3, 0, 0, 1; %e A244530 0, 393, 28, 7, 0, 0, 0, 1; %e A244530 0, 1339, 78, 8, 4, 0, 0, 0, 1; %e A244530 0, 4630, 201, 21, 9, 0, 0, 0, 0, 1; %e A244530 0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1; %p A244530 b:= proc(n, t, k) option remember; `if`(n=0, %p A244530 `if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)* %p A244530 b(n-j, max(0, t-1), k), j=1..n))) %p A244530 end: %p A244530 T:= (n, k)-> b(n-1, k$2) -`if`(n=1 and k=0, 0, b(n-1, k+1$2)): %p A244530 seq(seq(T(n, k), k=0..n-1), n=1..14); %t A244530 b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t>n, 0, Sum[b[j-1, k, k]*b[n-j, Max[0, t-1], k], {j, 1, n}]]]; T[n_, k_] := b[n-1, k, k] - If[n == 1 && k == 0, 0, b[n-1, k+1, k+1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Jan 13 2015, translated from Maple *) %Y A244530 Columns k=0-10 give: A063524, A106640(n-2), A244531, A244532, A244533, A244534, A244535, A244536, A244537, A244538, A244539. %Y A244530 Row sums give A000108(n-1). %Y A244530 Cf. A244454 (unordered unlabeled rooted trees). %K A244530 nonn,tabl %O A244530 1,8 %A A244530 _Joerg Arndt_ and _Alois P. Heinz_, Jun 29 2014