This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244553 #14 Feb 16 2025 08:33:23 %S A244553 1,-1,2,-1,0,2,0,-1,3,-4,2,2,0,0,0,-1,2,1,2,-4,0,2,0,2,1,-4,4,0,0,0,0, %T A244553 -1,4,-2,0,1,0,2,0,-4,2,0,2,2,0,0,0,2,1,-5,4,-4,0,4,0,0,4,-4,2,0,0,0, %U A244553 0,-1,0,4,2,-2,0,0,0,1,2,-4,2,2,0,0,0,-4,5 %N A244553 Expansion of phi(q^2) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function. %C A244553 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A244553 G. C. Greubel, <a href="/A244553/b244553.txt">Table of n, a(n) for n = 1..1000</a> %H A244553 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A244553 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A244553 Expansion of q * f(-q, -q^7)^2 * phi(q^2) / psi(-q) = q * f(-q, -q^7)^2 * chi(q^2)^2 / chi(-q) in powers of q where phi(), psi(), f() are Ramanujan theta functions. %F A244553 Euler transform of period 8 sequence [ -1, 2, 1, -2, 1, 2, -1, -2, ...]. %F A244553 Moebius transform is period 8 sequence [ 1, -2, 1, 0, -1, 2, -1, 0, ...]. %F A244553 a(2*n) = - A244554(n). a(2*n + 1) = A113411(n). a(8*n + 1) = A112603(n). a(8*n + 3) = 2 * A033761(n). a(8*n + 5) = a(8*n + 7) = 0. %e A244553 G.f. = q - q^2 + 2*q^3 - q^4 + 2*q^6 - q^8 + 3*q^9 - 4*q^10 + 2*q^11 + ... %t A244553 a[ n_] := If[ n < 1, 0, Sum[ {1, -2, 1, 0, -1, 2, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]]; %t A244553 a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}]; %o A244553 (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -2, 1, 0, -1, 2, -1][d%8 + 1]))}; %o A244553 (PARI) {a(n) = my(A, B); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); B = subst(A, x, x^2); polcoeff( B * (A - B) / 2, n))}; %o A244553 (Sage) A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[1] - A[2]; %o A244553 (Magma) A := Basis( ModularForms( Gamma1(8), 1), 33); A[2] - A[3]; %Y A244553 Cf. A033761, A113411, A112603, A244554. %K A244553 sign %O A244553 1,3 %A A244553 _Michael Somos_, Jun 30 2014