This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244561 #18 Mar 14 2019 09:35:03 %S A244561 271129,271577,482719,575041,603713,903983,965431,1518781,1624097, %T A244561 1639459,2131043,2131099,2541601,2931767,2931991,3083723,3098059, %U A244561 3555593,3608251,4067003,4573999,6134663,6135559,6557843,6676921,6678713,6742487,6799831,7400371,7523267,7523281,7761437,7765021,7892569,8007257,8629967,8840599,8871323,9208337,9454129,9454157,9854491,9854603,9930469,9937637,10192733,10422109,10675607 %N A244561 Odd integers m such that for every integer k > 0, m*2^k+1 has a divisor in the set {3, 5, 7, 13, 17, 241}. %C A244561 For n > 48, a(n) = a(n-48) + 11184810; the first 48 values are in the data. %C A244561 The set {3, 5, 7, 13, 17, 241} is the set of prime divisors of 2^24 - 1. Hence for every p in the set the multiplicative order of 2 modulo p divides 24. Note that twice the product of {3, 5, 7, 13, 17, 241} is 11184810. - _Jeppe Stig Nielsen_, Mar 10 2019 %C A244561 Subset of provable SierpiĆski numbers A076336. - _Jeppe Stig Nielsen_, Mar 10 2019 %F A244561 For n > 48, a(n) = a(n-48) + 11184810. %o A244561 (PARI) D=[3, 5, 7, 13, 17, 241];P=2*lcm(D);M=lcm(apply(d->znorder(Mod(2,d)),D));forstep(k=1,+oo,2,if(k%P==1,print();print());for(n=0,M-1,for(i=1,#D,k*Mod(2,D[i])^n+1==0 && next(2));next(2));print1(k,", ")) \\ _Jeppe Stig Nielsen_, Mar 10 2019 %Y A244561 Cf. A076336, A244070, A244071, A244072, A244073, A244074, A244076. %K A244561 nonn %O A244561 1,1 %A A244561 _Pierre CAMI_, Jun 30 2014