This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244589 #11 Oct 20 2020 04:00:34 %S A244589 1,1,5,67,1937,98791,7744549,857382695,126889656641,24157912257775, %T A244589 5749369223697701,1672527291075462559,584038879457972531185, %U A244589 241150002566590866157943,116245385996298375640197893,64707252902905394310560934391,41198982747438307655532993553409 %N A244589 E.g.f. A(x) satisfies the property that the sum of the coefficients of x^k, k=0..n, in A(x)^n equals (n+1)^n. %H A244589 Vaclav Kotesovec, <a href="/A244589/b244589.txt">Table of n, a(n) for n = 0..150</a> %F A244589 E.g.f. A(x) satisfies: Sum_{k=0..n} [x^k] A(x)^n = (n+1)^n. %F A244589 a(n) ~ exp(1-exp(-1)) * n! * n^(n-1). - _Vaclav Kotesovec_, Jul 03 2014 %e A244589 E.g.f.: A(x) = 1 + x + 5*x^2/2! + 67*x^3/3! + 1937*x^4/4! + 98791*x^5/5! +... %e A244589 where %e A244589 ILLUSTRATION OF INITIAL TERMS. %e A244589 If we form an array of coefficients of x^k/k! in A(x)^n, n>=0, like so: %e A244589 A^0: [1],0, 0, 0, 0, 0, 0, 0, ...; %e A244589 A^1: [1, 1], 5, 67, 1937, 98791, 7744549, 857382695, ...; %e A244589 A^2: [1, 2, 12], 164, 4560, 223652, 17054920, 1853019716, ...; %e A244589 A^3: [1, 3, 21, 297], 8049, 380853, 28237293, 3008400909, ...; %e A244589 A^4: [1, 4, 32, 472, 12608], 577864, 41657008, 4348646600, ...; %e A244589 A^5: [1, 5, 45, 695, 18465, 823475], 57747565, 5903103995, ...; %e A244589 A^6: [1, 6, 60, 972, 25872, 1127916, 77020344], 7706019180, ...; %e A244589 A^7: [1, 7, 77, 1309, 35105, 1502977, 100075045, 9797289761], ...; ... %e A244589 then we can illustrate how the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals (n+1)^n: %e A244589 1^0 = 1; %e A244589 2^1 = 1 + 1 = 2; %e A244589 3^2 = 1 + 2 + 12/2! = 9; %e A244589 4^3 = 1 + 3 + 21/2! + 297/3! = 64; %e A244589 5^4 = 1 + 4 + 32/2! + 472/3! + 12608/4! = 625; %e A244589 6^5 = 1 + 5 + 45/2! + 695/3! + 18465/4! + 823475/5! = 7776; %e A244589 7^6 = 1 + 6 + 60/2! + 972/3! + 25872/4! + 1127916/5! + 77020344/6! = 117649; ... %o A244589 (PARI) /* By Definition (slow): */ %o A244589 {a(n)=if(n==0, 1, n!*((n+1)^n - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j/j!)^n + x*O(x^k), k)))/n)} %o A244589 for(n=0, 20, print1(a(n), ", ")) %o A244589 (PARI) /* Faster, using series reversion: */ %o A244589 {a(n)=local(B=sum(k=0, n+1, (k+1)^k*x^k)+x^3*O(x^n), G=1+x*O(x^n)); %o A244589 for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); n!*polcoeff(x/serreverse(x*G), n)} %o A244589 for(n=0, 30, print1(a(n), ", ")) %Y A244589 Cf. A244577, A263075. %K A244589 nonn %O A244589 0,3 %A A244589 _Paul D. Hanna_, Jun 30 2014