A244593 Decimal expansion of z_c = phi^5 (where phi is the golden ratio), a lattice statistics constant which is the exact value of the critical activity of the hard hexagon model.
1, 1, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7, 4, 2
Offset: 2
Examples
11.09016994374947424102293417182819058860154589902881431067724311352630...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.12.1 Phase transitions in Lattice Gas Models, p. 347.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 83.
Links
- Eric Weisstein's MathWorld, Hard Hexagon Entropy Constant.
- Wikipedia, Hard Hexagon Model.
- D. W. Wood and R. W. Turnbull, z^2-11z-1 as an algebraic invariant for the hard-hexagon model, 1988 J. Phys. A: Math. Gen. 21 L989.
Crossrefs
Programs
-
Mathematica
RealDigits[GoldenRatio^5, 10, 103] // First
-
PARI
(5*sqrt(5)+11)/2 \\ Charles R Greathouse IV, Aug 10 2016
Formula
Equals ((1 + sqrt(5))/2)^5 = (11 + 5*sqrt(5))/2.
Equals phi^5 = 11 + 1/phi^5 = 3 + 5*phi, an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Nov 11 2023
Equals lim_{n->infinity} S(n, 5*(-1 + 2*phi))/ S(n-1, 5*(-1 + 2*phi)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023
Comments