A244596 Decimal expansion of the coefficient D appearing in the asymptotic evaluation of P_a(n), the number of primitive Pythagorean triples whose area does not exceed a given bound n.
2, 9, 7, 4, 6, 1, 5, 5, 2, 9, 8, 1, 2, 6, 0, 1, 8, 8, 9, 7, 1, 4, 6, 2, 4, 0, 2, 2, 7, 0, 1, 4, 7, 6, 7, 9, 8, 3, 2, 8, 4, 7, 0, 5, 4, 2, 2, 9, 5, 5, 1, 1, 9, 6, 7, 2, 9, 6, 7, 1, 7, 3, 8, 8, 4, 0, 1, 9, 8, 2, 4, 7, 7, 9, 3, 1, 0, 5, 0, 5, 0, 4, 1, 8, 4, 7, 9, 9, 6, 7, 4, 2, 4, 2, 2, 8, 0, 1, 4, 5, 0, 7, 4
Offset: 0
Examples
0.2974615529812601889714624022701476798328470542295511967296717388401982...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.2 Pythagorean Triple Constants, p. 277.
Links
- Eric Weisstein's MathWorld, Primitive Pythagorean Triple
Crossrefs
Cf. A242439.
Programs
-
Mathematica
-((1 + 1/2^(1/3))*Zeta[1/3]/((1 + 1/4^(1/3))*Zeta[4/3])) // RealDigits[#, 10, 103]& // First
Formula
P_a(n) = C*n^(1/2) - D*n^(1/3) + O(n^(1/4)*log(n)).
D = -((1 + 1/2^(1/3))*zeta(1/3)/((1 + 1/4^(1/3))*zeta(4/3))).