A244620 Initial terms of Erdős-Wood intervals of length 22.
3521210, 6178458, 13220900, 15878148, 22920590, 25577838, 32620280, 35277528, 42319970, 44977218, 52019660, 54676908, 61719350, 64376598, 71419040, 74076288, 81118730, 83775978, 90818420, 93475668, 100518110, 103175358, 110217800, 112875048, 119917490
Offset: 1
Keywords
Examples
3521210 = 2*5*7*11*17*269 and 3521210+22 = 3521232 = 2^4 * 3^4 * 11 * 13 * 19, and all numbers in [3521210,3521232] have at least one prime factor in {2, 3, 5, 7, 11, 13, 17, 19, 269}. Therefore 3521210 is in the list.
Links
- Christopher Hunt Gribble, Table of n, a(n) for n = 1..1000
- Wikipedia, Erdős-Woods number
- Index entries for linear recurrences with constant coefficients, signature (1, 1, -1).
Programs
-
Maple
isEWood := proc(n,ewlength) local nend,fsn,fsne,fsall,fsk ; nend := n+ewlength ; fsn := numtheory[factorset](n) ; fsne := numtheory[factorset](nend) ; fsall := fsn union fsne ; for k from n to nend do fsk := numtheory[factorset](k) ; if fsk intersect fsall = {} then return false; end if; end do: return true; end proc: for n from 2 do if isEWood(n,22) then print(n) ; end if; end do:
Formula
a(1) = A059757(2).
From Christopher Hunt Gribble, Dec 02 2014: (Start)
a(1) = A130173(524).
a(2*n+1) = 3521210 + 9699690*n.
a(2*n+2) = 6178458 + 9699690*n.
a(n) = (-4849867 - 2192597*(-1)^n + 9699690*n)/2.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: (3521232*x^2+2657248*x+3521210) / ((x-1)^2*(x+1)). (End)
Extensions
More terms from Christopher Hunt Gribble, Dec 03 2014
Comments