This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244622 #36 Feb 09 2024 08:43:22 %S A244622 5,31,2927,40361,201015517717077830328949,13585328068403621603022853, %T A244622 5692733621468679832887230172131, %U A244622 3215488142498485484492183158345029261034221047849345857469577412562094716564064084247 %N A244622 Primes in the sequence of first arithmetic derivative of primorials. %C A244622 A002110 is the sequence of primorial numbers (product of consecutive prime numbers, written prime(n)#). A024451 = numerator of Sum_{i = 1..n} 1/prime(i) is the first arithmetic derivative of prime(n)#, written (prime(n)#)'. The second arithmetic derivative of prime(n)#, written (prime(n)#)'' [= A369651(n)] is 1 if (prime(n)#)' is prime. This case leads to a selection of 13 primorials out of the first 100 primorials. The table shows the counting number n of this selection, the primorial notation, the index i used in A002110 and A024451 and the 2nd arithmetic derivative of the 13 prime numbers of A024451. Remark: i [= A109628(n)] is the prime number index of A000040. %C A244622 ------------------------------------------------------ %C A244622 n a(n) = (prime(i)#)’ i (a(n))' %C A244622 ------------------------------------------------------ %C A244622 1 (3#)’ 2 1 %C A244622 2 (5#)’ 3 1 %C A244622 3 (11#)’ 5 1 %C A244622 4 (13#)’ 6 1 %C A244622 5 (61#)’ 18 1 %C A244622 6 (67#)’ 19 1 %C A244622 7 (79#)’ 22 1 %C A244622 8 (211#)’ 47 1 %C A244622 9 (269#)’ 57 1 %C A244622 10 (271#)’ 58 1 %C A244622 11 (307#)’ 63 1 %C A244622 12 (349#)’ 70 1 %C A244622 13 (367#)’ 73 1 %C A244622 A-number links for A109628 and A369651 added by _Antti Karttunen_, Feb 08 2024 %H A244622 Freimut Marschner, <a href="/A244622/b244622.txt">Table of n, a(n) for n = 1..13</a> %F A244622 a(n) = (prime(i)#)' if (prime(i)#)'' = 1. %F A244622 a(n) = (prime(i)#)' if A003415(A002110(i)) is prime or A003415(A024451(i)) = 1. %F A244622 a(n) = A024451(A109628(n)). - _Antti Karttunen_, Feb 08 2024 %e A244622 a(1) = (3#)' = (2*3 = 6)' = 2+3 = 5. %p A244622 a(1) = (prime(2)#)' = (3#)' = (6)' = 5, (5)' = 1 ; a(4) = (prime(6)#)' = (13#)' =(30030)' = 40361, (40361)' = 1. %t A244622 f[n_] := Numerator[Accumulate[Table[1/Prime[i], {i, 1, n}]]]; %t A244622 Select[f[50], PrimeQ] (* _Ivan N. Ianakiev_, Jul 08 2019 *) %o A244622 (PARI) lista() = {vadp = readvec("/gp/bfiles/b024451.txt"); for (i=1, #vadp, if (isprime(vadp[i]), print1(vadp[i], ", ");););} \\ _Michel Marcus_, Jul 05 2014 %Y A244622 Cf. A000040, A002110, A024451, A003415, A109628, A244621, A369651. %Y A244622 Cf. also A351088. %K A244622 nonn %O A244622 1,1 %A A244622 _Freimut Marschner_, Jul 02 2014