This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244623 #59 Sep 30 2021 18:18:42 %S A244623 1,9,25,27,49,81,121,125,169,243,289,343,361,529,625,729,841,961,1331, %T A244623 1369,1681,1849,2187,2197,2209,2401,2809,3125,3481,3721,4489,4913, %U A244623 5041,5329,6241,6561,6859,6889,7921,9409,10201,10609,11449,11881,12167,12769,14641,15625,16129,16807,17161,18769,19321,19683 %N A244623 Odd prime powers that are not primes. %C A244623 Intersection of A061345 and A014076. %C A244623 A014076 set minus A061346. %H A244623 Jens Kruse Andersen, <a href="/A244623/b244623.txt">Table of n, a(n) for n = 1..10000</a> %F A244623 a(n) = A079290(n) at least in the range n=3..94, and perhaps beyond. - _R. J. Mathar_, Aug 20 2014 %F A244623 Sum_{n>=1} 1/a(n) = 1/2 + Sum_{p prime} 1/(p*(p-1)) = 1/2 + A136141. - _Amiram Eldar_, Dec 21 2020 %t A244623 Join[{1},Select[Range[1,20001,2],PrimePowerQ[#]&&(!PrimeQ[#])&]] (* _Harvey P. Dale_, Dec 11 2018 *) %o A244623 (Sage) %o A244623 def isA244623(n) : %o A244623 return(n % 2 == 1 and is_prime_power(n) == 1 and is_prime(n) == 0) %o A244623 [n for n in (1..20000) if isA244623(n)] %o A244623 (PARI) isok(p) = ((p%2) && !isprime(p) && isprimepower(p)) || (p==1); \\ _Michel Marcus_, Jul 06 2021 %Y A244623 Intersection of A005408 and A025475. %Y A244623 Cf. A061345 (odd prime powers), A061346 (odd neither prime nor prime power), A062739 (odd powerful), A075109 (perfect powers), A136141. %K A244623 nonn %O A244623 1,2 %A A244623 _Jani Melik_, Jul 02 2014