cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244639 Decimal expansion of the sum of the reciprocals of the heptagonal numbers (A000566).

This page as a plain text file.
%I A244639 #38 Feb 08 2023 15:16:44
%S A244639 1,3,2,2,7,7,9,2,5,3,1,2,2,3,8,8,8,5,6,7,4,9,4,4,2,2,6,1,3,1,0,0,8,4,
%T A244639 0,1,6,5,2,2,8,0,1,1,7,3,7,1,3,9,2,4,3,7,2,2,8,5,4,5,7,6,2,6,8,8,5,1,
%U A244639 6,2,2,1,0,7,6,8,5,8,4,4,7,5,3,5,6,8,0,9,0,8,6,0,4,1,2,4,4,7,1,1,9,3,2,0,9
%N A244639 Decimal expansion of the sum of the reciprocals of the heptagonal numbers (A000566).
%C A244639 For the partial sums of one half of this series, that is Sum_{k>=0} 1/((k+1)*(5*k+2)), with value 0.6613896265611944283..., see A294826(n)/A294827(n), for n >=  0. - _Wolfdieter Lang_, Nov 16 2017
%D A244639 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
%H A244639 L. Downey, B. W. Ong, and J. A. Sellers, <a href="https://www.d.umn.edu/~jsellers/downey_ong_sellers_cmj_preprint.pdf">Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers</a>, Coll. Math. J. 39, no. 8, 2008, 391-394.
%H A244639 Society for Industrial and Applied Mathematics, <a href="https://archive.siam.org/journals/problems/downloadfiles/07-003s.pdf">Sums of Reciprocals of Polygonal Numbers and a Theorem of Gauss</a>
%H A244639 Wikipedia, <a href="http://en.wikipedia.org/wiki/Heptagonal_number">Heptagonal Number</a>
%F A244639 Equals Sum_{n>=1} 2/(5n^2 - 3n).
%F A244639 ((5/2)*log(5) - (2*phi-1)*(log(phi) - (Pi/5)*sqrt(7-4*phi)))/3, with the golden section phi := (1 + sqrt(5))/2. This is (5/10)*v_5(2) given from the Koecher reference on p. 192 as ((5/2)*log(5) - sqrt(5)*log((1+sqrt(5))/2) + (1/5)*Pi*sqrt(5*(5-2*sqrt(5))))/3. Compare this with the number given in the Mathematica program. - _Wolfdieter Lang_, Nov 16 2017
%e A244639 1.32277925312238885674944226131008401652280117371392437228545762688516221076....
%t A244639 RealDigits[ Pi*Sqrt[25 - 10 Sqrt[5]]/15 + 2Log[5]/3 + (1 + Sqrt[5]) Log[ Sqrt[ 10 - 2 Sqrt[5]]/2]/3 + (1 - Sqrt[5]) Log[ Sqrt[ 10 + 2 Sqrt[5]]/2]/3, 10, 111][[1]] (* or *)
%t A244639 RealDigits[ Sum[2/(5 n^2 - 3 n), {n, 1, Infinity}], 10, 111][[1]]
%o A244639 (PARI) sumnumrat(2/n/(5*n-3),1) \\ _Charles R Greathouse IV_, Feb 08 2023
%K A244639 nonn,cons,easy
%O A244639 1,2
%A A244639 _Robert G. Wilson v_, Jul 03 2014