cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244640 a(n) is the number of 2-partitions of the set of primes less than A059756(n) that demonstrate that A059756(n) is prime-partitionable.

This page as a plain text file.
%I A244640 #42 Dec 23 2024 14:53:43
%S A244640 2,4,4,16,16,16,8,192,240,128,512,36,24,224,96,896
%N A244640 a(n) is the number of 2-partitions of the set of primes less than A059756(n) that demonstrate that A059756(n) is prime-partitionable.
%C A244640 The sequence comprises the number of all possible partitions {P1,P2} for which each n is prime-partitionable.
%H A244640 Christopher Hunt Gribble, <a href="/A244640/a244640.txt">List of 2-partitions</a>
%H A244640 W. Holsztynski, R. F. E. Strube, <a href="http://dx.doi.org/10.1016/0012-365X(78)90059-6">Paths and circuits in finite groups</a>, Discr. Math. 22 (1978) 263-272.
%H A244640 R. J. Mathar and M. F. Hasler, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2014-June/013267.html">Is 52 prime-partitionable?</a>, Seqfan thread (Jun 29 2014)
%H A244640 W. T. Trotter, Jr. and Paul Erdős, <a href="https://www.renyi.hu/~p_erdos/1978-49.pdf">When the Cartesian product of directed cycles is Hamiltonian</a>, J. Graph Theory 2 (1978) 137-142 DOI:10.1002/jgt.3190020206.
%e A244640 Consider the first prime-partitionable number, A059756(1) = 16.
%e A244640 We have P = {2, 3, 5, 7, 11, 13}.
%e A244640 a(1) = 2 because the 2-partitions of P for which 16 is prime-partitionable are:
%e A244640     P1a = {2, 5, 11},       P2a = {3, 7, 13}
%e A244640     P1b = {2, 3, 7, 13},    P2b = {5, 11}
%e A244640 as is shown below:
%e A244640        n1   n2   p1a   p2a      p1b   p2b
%e A244640         1 + 15     -     3        -     5
%e A244640         2 + 14     2     7        2     -
%e A244640         3 + 13     -    13        3     -
%e A244640         4 + 12     2     3        2     -
%e A244640         5 + 11     5     -        -    11
%e A244640         6 + 10     2     -        2     5
%e A244640         7 +  9     -     3        7     -
%e A244640         8 +  8     2     -        2     -
%e A244640         9 +  7     -     7        3     -
%e A244640        10 +  6     2     3        2     -
%e A244640        11 +  5    11     -        -     5
%e A244640        12 +  4     2     -        2     -
%e A244640        13 +  3     -     3       13     -
%e A244640        14 +  2     2     -        2     -
%e A244640        15 +  1     5     -        3     -
%p A244640 Derived from the program provided by _Richard J. Mathar_ in the second link.
%p A244640 ppartabl := proc (n)
%p A244640   local i, j, pless, p1, p2, n1, n2, pset1, pset2, alln1n2done, foundp1p2;
%p A244640   # construct set of primes < n in pless.
%p A244640   pless := {};
%p A244640   for i from 2 to n-1 do
%p A244640     if isprime(i) then
%p A244640       pless := `union`(pless, {i});
%p A244640     end if;
%p A244640   end do;
%p A244640   # loop over all nontrivial (nonempty) subsets of the primes, P1.
%p A244640   j := 0;
%p A244640   for pset1 in combinat[choose](pless) do
%p A244640     if 1 <= nops(pset1) then
%p A244640       if pset1 = pset2 then
%p A244640         break;
%p A244640       end if;
%p A244640       # P2 is P \ P1.
%p A244640       pset2 := `minus`(pless, pset1);
%p A244640       # flag to indicate that for each n1,n2 we found a pair.
%p A244640       alln1n2done := true;
%p A244640       for n1 to n-1 do
%p A244640         n2 := n-n1;
%p A244640         # flag that we found a (p1,p2).
%p A244640         foundp1p2 := false;
%p A244640         for p1 in pset1 do
%p A244640           if igcd(n1, p1) <> 1 then
%p A244640             foundp1p2 := true;
%p A244640             break;
%p A244640           end if;
%p A244640           for p2 in pset2 do
%p A244640             if igcd(n2, p2) <> 1 then
%p A244640               foundp1p2 := true;
%p A244640               break;
%p A244640             end if;
%p A244640           end do:
%p A244640           if foundp1p2 = true then
%p A244640             break;
%p A244640           end if;
%p A244640         end do:
%p A244640         if foundp1p2 = false then
%p A244640           alln1n2done := false;
%p A244640           break;
%p A244640         end if;
%p A244640       end do:
%p A244640       if alln1n2done = true then
%p A244640         j := j+1;
%p A244640         if j = 1 then
%p A244640           printf("%d\n", n);
%p A244640         end if;
%p A244640         print(j, pset1, pset2);
%p A244640       end if;
%p A244640     end if;
%p A244640   end do:
%p A244640 end proc:
%p A244640 L := [16, 22, 34, 36, 46, 56, 64, 66, 70, 76, 78, 86, 88, 92,
%p A244640       94, 96];
%p A244640 for i from 1 to 16 do
%p A244640   ppartabl(L[i]);
%p A244640 end do:
%Y A244640 Cf. A059756.
%K A244640 nonn
%O A244640 1,1
%A A244640 _Christopher Hunt Gribble_, Jul 03 2014