cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244641 Decimal expansion of the sum of the reciprocals of the pentagonal numbers (A000326).

This page as a plain text file.
%I A244641 #27 Apr 24 2025 13:20:42
%S A244641 1,4,8,2,0,3,7,5,0,1,7,7,0,1,1,1,2,2,3,5,9,1,6,5,7,4,5,3,1,2,5,4,2,1,
%T A244641 3,8,1,6,5,8,4,0,5,4,2,5,3,7,5,5,0,7,7,7,9,6,3,4,1,9,8,0,6,5,5,2,4,3,
%U A244641 5,9,6,9,8,5,2,9,4,7,3,0,1,6,9,3,6,7,2,2,2,7,6,2,2,9,1,3,6,0,9,7,5,0,7,6,8
%N A244641 Decimal expansion of the sum of the reciprocals of the pentagonal numbers (A000326).
%H A244641 G. C. Greubel, <a href="/A244641/b244641.txt">Table of n, a(n) for n = 1..10000</a>
%H A244641 Hongwei Chen and G. C. Greubel, <a href="https://web.archive.org/web/20160305012605/http://www.siam.org/journals/categories/07-003.php">Sum of the Reciprocals of Polygonal Numbers (Solved)</a>, SIAM Problems and solutions.
%H A244641 Hongwei Chen and G. C. Greubel, <a href="/A244641/a244641.pdf">Siam, Problems and Solutions, problem 07-003 and the solution</a>
%F A244641 Sum_{n>=1} 2/(3*n^2 - n).
%F A244641 Equals 3*log(3) - Pi*sqrt(3)/3 = A016650 - A093602. - _Michel Marcus_, Jul 03 2014
%F A244641 Equals 2*A294514. - _Hugo Pfoertner_, Apr 24 2025
%e A244641 1.482037501770111223591657453125421381658405425375507779634198065524359698529473...
%t A244641 RealDigits[Sum[2/(3*n^2-n), {n,1,Infinity}], 10, 111][[1]]
%t A244641 RealDigits[3*Log[3] - Pi*Sqrt[3]/3, 10, 140][[1]] (* _G. C. Greubel_, Mar 24 2024 *)
%o A244641 (Magma) SetDefaultRealField(RealField(139)); R:= RealField(); 3*Log(3)-Pi(R)*Sqrt(3)/3; // _G. C. Greubel_, Mar 24 2024
%o A244641 (SageMath) numerical_approx(3*log(3)-pi*sqrt(3)/3, digits=139) # _G. C. Greubel_, Mar 24 2024
%Y A244641 Cf. A000326, A016650, A093602, A294514.
%Y A244641 Decimal expansion of the sum of the reciprocals of the m-gonal numbers: A000038 (m=3), A013661 (m=4), this sequence (m=5), A016627 (m=6), A244639 (m=7), A244645 (m=8), A244646 (m=9), A244647 (m=10), A244648 (m=11), A244649 (m=12), A275792 (m=14).
%K A244641 nonn,cons,easy
%O A244641 1,2
%A A244641 _Robert G. Wilson v_, Jul 03 2014