cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244645 Decimal expansion of the sum of the reciprocals of the octagonal numbers (A000567).

This page as a plain text file.
%I A244645 #21 Feb 08 2023 16:22:48
%S A244645 1,2,7,7,4,0,9,0,5,7,5,5,9,6,3,6,7,3,1,1,9,4,9,5,3,4,9,2,1,0,2,4,3,3,
%T A244645 2,1,1,5,5,6,6,3,4,4,8,0,3,9,0,2,4,7,2,3,2,6,9,3,4,9,1,9,8,4,0,7,5,1,
%U A244645 5,1,5,1,5,1,9,5,5,4,5,1,9,6,0,7,6,2,4,3,0,6,3,1,6,3,3,1,4,1,0,8,8,0,5,0,3
%N A244645 Decimal expansion of the sum of the reciprocals of the octagonal numbers (A000567).
%H A244645 Lawrence Downey, Boon W. Ong, and James A. Sellers, <a href="https://www.d.umn.edu/~jsellers/downey_ong_sellers_cmj_preprint.pdf">Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers</a>, Coll. Math. J., 39, no. 5 (2008), 391-394.
%H A244645 Wikipedia, <a href="http://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>
%F A244645 Equals Sum_{n>=1} 1/(3*n^2 - 2*n).
%F A244645 Equals Pi/(4*sqrt(3)) + 3*log(3)/4. - _Vaclav Kotesovec_, Jul 05 2014
%e A244645 1.2774090575596367311949534921024332115566344803902472326934919840751515151955452...
%t A244645 RealDigits[ Sum[1/(3n^2 - 2n), {n, 1 , Infinity}], 10, 111][[1]]
%o A244645 (PARI) sumpos(n=1, 1/(3*n^2 - 2*n)) \\ _Michel Marcus_, Sep 12 2016
%o A244645 (PARI) sumnumrat(1/(3*n-2)/n,1) \\ _Charles R Greathouse IV_, Feb 08 2023
%Y A244645 Cf. A000038, A013661, A244639, A244644, A244646, A244647, A244648, A244649, A000567.
%K A244645 nonn,cons,easy
%O A244645 1,2
%A A244645 _Robert G. Wilson v_, Jul 03 2014