cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244647 Decimal expansion of the sum of the reciprocals of the decagonal numbers (A001107).

This page as a plain text file.
%I A244647 #20 Feb 08 2023 23:03:11
%S A244647 1,2,1,6,7,4,5,9,5,6,1,5,8,2,4,4,1,8,2,4,9,4,3,3,9,3,5,2,0,0,4,7,6,0,
%T A244647 3,8,2,1,0,8,3,6,1,7,0,0,9,2,2,7,7,2,8,9,0,9,4,9,8,3,7,4,4,1,5,4,4,6,
%U A244647 9,6,3,5,6,3,5,0,7,2,9,5,4,8,7,1,0,5,3,5,7,9,7,8,8,6,7,7,1,5,3,2,2,0,5,6,9
%N A244647 Decimal expansion of the sum of the reciprocals of the decagonal numbers (A001107).
%C A244647 For the partial sums of the reciprocals of the (positive) decagonal numbers see A250551(n+1)/A294515(n), n >= 0. - _Wolfdieter Lang_, Nov 07 2017
%H A244647 Wikipedia, <a href="http://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>
%F A244647 Sum_{n>0} 1/(4n^2 - 3n) = log(2) + Pi/6, (A002162 + A019673).
%e A244647 1.216745956158244182494339352004760382108361700922772890949837441544696356350....
%t A244647 RealDigits[ Log[2] + Pi/6, 10, 111][[1]] (* or *)
%t A244647 RealDigits[ Sum[1/(4n^2 - 3n), {n, 1 , Infinity}], 10, 111][[1]]
%o A244647 (PARI) log(2)+Pi/6 \\ _Charles R Greathouse IV_, Feb 08 2023
%Y A244647 Cf. A001107, A000038, A013661, A244639, A016627, A244645, A244646, A244648, A244649, A250551(n+1)/A294515(n).
%K A244647 nonn,cons,easy
%O A244647 1,2
%A A244647 _Robert G. Wilson v_, Jul 03 2014